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Abstract

Variable exponent Lebesgue spaces are generalizations of classical Lebesgue spaces and
have importance in many branches of Mathematical Analysis. Especially, direct and
converse theorems and their improvements are studied by many mathematicians in these
spaces. In this article, direct and converse predictions for the rate of convergence of
Fejér means of functions belonging to the variable Lebesgue space LPO(R) are
established by using an appropriate K-functional. In this way, the result of Z. Ditzian
on Fejér means in classical Lebesgue spaces LP(R)(1 < p < o) is generalized.
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Reel eksende degisken uislii Lebesgue uzaylarda Fejér ortalamalar

Oz

Degisken iislii Lebesgue uzaylar: klasik Lebesgue uzaylarinin genellemeleridir ve
Matematiksel Analizin bircok dalinda éneme sahiptir. Ozellikle direkt ve ters teoremler
ve bunlarin gelistirilmesi bu uzaylarda bir¢cok matematik¢i tarafindan incelenmektedir.
Bu makalede, degisken iishi Lebesgue uzayr LPO(R)'ve ait fonksiyonlarin Fejér
ortalamalarimin yakinsaklik hizina iligkin dogrudan ve ters tahminler, uygun bir K-
fonksiyonu kullanilarak olusturulmustur. Bu sekilde, Z. Ditzian'in klasik Lebesgue
uzaylarinda LP (R)(1 < p < ) Fejér ortalamalarina iliskin sonucu genellestirilmistir.
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1. Introduction

The classical Lebesgue spaces LP (1 < p < o) are very important spaces for studying
approximation theory problems. There are several direct and converse theorems of
approximation theory on L spaces defined on the real axis R or on its intervals. These
theorems can be found in the monographs [1] and [2]. In recent years, approximation
problems that replace a fixed exponent p with a variable exponent p(:) in variable
exponent Lebesgue spaces, which are a generalization of classical Lebesgue spaces, have
also been studied. Most of these studies are concerned with variable exponent Lebesgue
spaces of 2m-periodic functions and summability methods of trigonometric Fourier series
(see, for example, [3]-[11]). In this work, we established an approximation theorem for
Fejér means of non-periodic functions belonging to variable Lebesgue space LPC)(R),
and generalized Theorem 1 of [12].

Variable exponent Lebesgue spaces have been used in many areas of Mathematical
Analysis in recent years. In this part, we give a brief knowledge of variable exponent
Lebesgue spaces. More details about these spaces can be found in [13, Chapters 2-5].

The set of all Lebesgue measurable functions P (IR) are denoted by
p(): R - [1, 0],
which are referred to as exponent functions. For p(-) € P(R) we set

p_: = essinfp(x), p,: = esssupp(x).

XER XER

A function p(-) € P(R) is referred to as locally log-Holder continuous if there is a
constant ¢, such that

Co 1
— < 0 — -
Ip() =PI < 5 0y ER I —yl <3, (1.1)
and log-Holder continuous at infinity if there are constants ¢, and p,, such that
Coo
P() = Peol < iy X € R (1.2)

The class of exponent functions which satisfies both (1.1) and (1.2) will be denoted by
LH(R).

For an exponent function p(:) € P(R) and a Lebesgue measurable function f, the
modular associated with p(+) is defined in the following

P = [ IFGOPDdx+ Ifll ()
R\RE

where RP”: = {x € R:p(x) = »}. The variable exponent Lebesgue space LPO(R) is
the set of Lebesgue measurable functions f such that p,)(f/a) < oo for some a > 0,
which is a Banach space with respect to the norm

”f”Lp(-)(]Rg): = inf{a > inp(.)(f/a) < 1}.

(see [13]). Incase p(x) = p, 1 < p < oo, LPO(R) coincides with the classical Lebesgue
space LP(R).
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The analog of Minkowski’s inequality holds for variable exponent Lebesgue spaces (see
[13, Corollary 2.38]).

If f:Rx R - R is Lebesgue measurable and f(-,y) € LP(R) for almost all y € R,
then

R

< L IFCI 0 dy. (L3)
Lp(')(]R) R

Note that, throughout the paper, the expression X < Y means that there is a constant K >
0 such that X < K.Y holds.

A non-negative, measurable function w is called a weight if 0 < w(x) < co almost
everywhere. For 1 < p < oo, the weighted Lebesgue space L, (R) with the weight w is
defined by the space of all Lebesgue measurable functions f such that

1

P
1 ll2 ry: = (fR If(x)lpw(x)dx> < o,

For 1 < p < o, a weight function w is in the Muckenhoupt class 4, (R) if

p—-1
5111p <|Tllfl w(x)dx) (lTllfI w(x)l‘p'dx> < oo,

where the supremum is taken over all intervals I ¢ R, and p’ = p/p — 1 (1] is the length
of the interval I). The Muckenhoupt class A;(R) is defined as the class of weights w
such that

esssupM <
XER w(x)

)

where M is the Hardy-L.ittlewood maximal operator, that is,
M():f = Mf () = sup [ f()dy.
X

The following extrapolation theorem can be deduced from Theorem 3.16 and Corollary
5.32 of [13].

Theorem 1: Let p(-) € LH(R) and 1 < p_ < p, < o and p, = 1. Suppose that for a
family of functions F, the inequality

f F(x)Pow(x)dx < f G(x)Pow(x)dx, (F,G) € F

R R

where (F, G) are pairs of non-negative, measurable functions, holds Yw € A, (R). Then,
for (F,G) € F,

”F”LP(J(R) s ”G”LP(‘)(R)-

Note that the conditions p(-) € LH(R) and 1 < p_ < p, < o are sufficient for the
boundedness of the Hardy-Littlewood maximal operator on the space LP)(R) ([13,

p.89]).
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2. Approximation by Fejér means in variable exponent Lebesgue spaces
Fejér means of the function f € LPO)(R) are defined as

F(F)(): = (F * G(x) = f fx— DG()dt,
R

where

A\ ?
1 Sin—

Gy (0): = e

T ,A>0
2
is the Fejér kernel.

The Hilbert transform of f € LPO(R) is given by
1[ flx—t
H(f)(x):zP.V.;f jydt,

where P. V. means Cauchy Principal Value. By [14, Theorem 9] we have
||H(f)”L€,(lR) S ”f”Lev(R)’f € L@(R),

where 1 < p < o and w € 4,(R), hence Theorem 1 yields H(f) € LPO(R) for f €
LPO(R), provided that p(-) € LH(R) and 1 < p_ < p,. < . We consider the subspace
HPO(R) of LPO(R) defined by

HPO(R): = {g € L”(')(R):;—xH(g) c Lp<->(ma)}.

This article is devoted to estimating the rate of approximation of the Fejér means in the
LPO(R). The main result of the article is the following Theorem 2.

Theorem 2: Let p(-) € LH(R) and 1 < p_ < p, < 0. For f € LPO(R) we have

K(f, %)Lp(_m S IEH) = Fllpog < K (£.3)

LPO(R)

where

_ d
KU 0 0y = mf{nf = gllmo + ¢ |- H(o)

g € 7{P<'>(R)}.
Lp(')(]R)

To prove the above theorem, we require the following Lemma.

Lemmal: Letp(:) e LH(R)and 1 < p_ < p, < o. Then
”Fl(f) _f”LP(')(R) - 0,1 - (21)
for f € LPO(R).

Proof: Fix e > 0. Since L7 (R), the space of bounded functions of compact support, is
dense in LPO(R) ([13, Theorem 2.72]), there exists a function g € L*(R) (not identically
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zero) such that [If — gll vy < €.
By [15, Theorem 2.1],

A2 gy < Il (s € L, (R)

for1 <p <ocoandw € 4,(R). Thus, by Theorem 1, we get

IE. (Ml po gy S IRILpo g, h € LPO(R). (2.2)
Then by (2.2),

I1F2(F) = fll oy < 12U = Dl ooy + 1Fa(9) — gll ooy + If = g1l ooy

< 211f = gll o + 1F1@) = gl o

< 2e + IFa(9) = gll po> gy

Since € > 0 is arbitrary, showing

1F2(9) — gll poo gy = 0,4 >

will be sufficient to complete the proof. By [13, Theorem 2.58] the last statement is
equivalent to modular convergence, i.e.

[ 1E@)60 =~ gGPOdx - 0,2 e
R
Itis clear that g, € Ly (R) and ||golle < 1/2 for the function

1
go(x):= mg(x)-

Since ||Gy]l; = 1, (see for detail [12]) we get

1Fa(go) ()| = (G * go) ()| =

[ 90 = DGr(020e
R

<lGllillgolle = 1/2,
which implies ||F;(go)lle < 1/2, and hence

1F2(g0) — golleo = 1G2 * go — gollew < 1.
Therefore,

JlFA(Q)(X)—g(x)I”(")dx=j 1(Gr * 9)(x) — g(0) PP dx
R R
=J 1(Ga * 21191l 0 g0) (x) = 21l glle0go ()PP dx
R
N J 2llgll)? @162 * go) ) — go ()PP dx
R

< Cllgllo + 1% [ 162 900 - go(IP
R
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< 2lgll, + 1)P* f Gy * 90) () — go () P-dx.
R

Since g, € LP-(R), we have

f Gy * 90) () — o () [P-dx = 0,2 > o0
R

(see, for example [16, Theorem 2.6.4]) and (2.1) follows.

Proof of Theorem 2: The inequality (2.2) implies F; = G, * f € LPO(R) for f €
LPO(R). Thus, the identity

Gl*f_G/l*(G/l*f):%;_xH(GA*f)» (2.3)
which is proved in [12], yields %H(GA * f) € LPO(R), hence G, * f € HPO(R). By
considering this fact, (2.3) and (2.2), we obtain

1 1d
K(f,= <|If - oo+ = = H
(f' A)LP(')(R) = ”f G)l * f”Lp()(]R) + 1 ||dx (Gﬂ. * f)

=|lf — Gy = f”Lp(')(R) + |Gy f— Gy (Gy = f)”Lp(-)([R)
S ”f — G *f”Lp(')(lR)’

which yield the converse inequality.
Let € > 0 be arbitrary. By definition of K(f, %)

HPO(R) such that

LPO(R)

PO® there exist a function g, €

If = gellupoe + 5 [ H@O || iy gy < A+ OK (£:3) (24)

LPOR LPOR)

By considering (2.2),
If = 2Dl powy < I1f = gell pomy + 196 = Ga * gell oo gy
+162 % (e = Al pog
S = gellpory T 196 = Ga * gell oo (gy-
We have
lge — Ga * gell ooy < G2 * ge — Ga * (Ga * gl ooy
H1G2 * (G * gO) = Gy * (G * g ooy
HIGr * (Gr * ge) = gell o wy
=1 +L(r)+ ()
for r > 0. Using (2.2) again,
I5(r) = 116, * (Gr * g&) — gell poy
<Gy * (Gr * ge = g ooy T 1Gr * ge — Gell oo gy
S NGy * ge = gell oo ry-
193



BAUN Fen Bil. Enst. Dergisi, 26(1), 188-195, (2024)

By Lemma l, |G, * ge — gell po>(ry = 0, and hence I3(r) — 0 asr — co. Thus we have

I;(r)<e=

H(ge) 1r>

= Te.
A ||d LPO(R) €

Since

d d
EH(G/I * ge)(x) = (GA * aH(ge)> (x),

by (2.3) and (2.2) we get
I = 1Gy * ge — Gy % (G * gl ooy

”GA * = H(ge)

S—|(|-—H .
LPO(R) AHdX ( E) LPO(R)

It is known that (see [12])
d 2 d
a(Gt * (G * ge)) = t_z(Gt * EH(ge))

Considering this equality, (1.3) and (2.2),
L) = |Gy * (Gy * g&) — Gy * (G * gl o gy

r

f (Gt * (G * ge))dt

A LPO(R)
T
=2|[ = ( H(ge)> dt
A LPO(R)
T
] .
S * —
. t LPO(R) t?
T
<o), | =
~ldx ge LPO(R) . 2

< ||
= 7 llax e
By combining these estimates for I;,I,(r) and I5(r), and considering (2.4) we get

If = B(Ollpog s A+ (f.5)

Since € > 0 is arbitrary, this gives the direct estimate.
By taking p(x) = p, i. e. in the LP(R) (1 < p < o), this theorem was obtained by Z.
Ditzian in [12].

Lp(')(lR).

AJ pC )(]R)
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