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Abstract 

This study aims to choose the equating method with the least equating error by using the equating 

methods in Classical Test Theory and Item Response Theory. In this study, booklet 1 and booklet 3 data were 

used for PISA (Programme for International Student Assessment) 2012 Mathematics test. Data from Turkey, 

Indonesia, Shanghai/China and Finland,  countries participating in PISA 2012, were selected for this study. 

Non-equivalent groups design was used in the test equating process. Linear equating methods [Tucker (w1=1, 

w1=0.5), Levine observed score (w1=1, w1=0.5), Levine true score, Classical Congeneric and Braun-Holland), 

equipercentile equating methods (pre smoothing according to C6 polynomial degree, beta4, post smoothing 

according to S 0.05 cubic function, frequency estimation (w1=1, w1=0.5) ] were used in the study. In Classical 

Test Theory, the least error is obtained from the frequency estimation method with a synthetic universe 

weight of w1 = 0.5. For the Item Response Theory, the calibration method was first decided, which is the 

Stocking-Lord method. After the scale transformation was achieved with the Stocking-Lord calibration 

method, the equating scores were calculated from the IRT's true and observed equating methods. The least 

error in IRT was obtained from the true score equating method. For error values, error coefficients were 

calculated according to Newton-Raphson's delta method and bootstrap methods. When the error coefficients 

(delta and bootstrap) of the equating methods in both theories were compared, it was found that the equating 

methods based on IRT had fewer errors than the equating methods in CTT, and the method with the least 

equating error was the IRT true score equating. The least equating error frequency estimation in CTT (w1=0.5) 

and the most error Levine true score equating method. 

Keywords: Test Equating, Classical Test Theory, Item Response Theory, Common Item Non-

Equivalent Groups Design 

Özet 

Bu çalışmanın amacı Klasik Test Kuramı (KTK) ve Madde Tepki Kuramı (MTK) bünyesindeki eşitleme 

yöntemlerini kullanarak en az eşitleme hatasına sahip eşitleme yöntemine karar vermektir. Bu çalışmada PISA 

2012 Matematik testi için kitapçık 1 ve kitapçık 3 verileri kullanılmıştır. Bu çalışma için PISA (Uluslararası 

Öğrenci Değerlendirme Programı) 2012 uygulamasına katılan Türkiye Endonezya, Şangay/ Çin ve Finlandiya 

ülkelerin verileri seçilmiştir. Test eşitleme sürecinde eşdeğer olmayan gruplar deseni kullanılmıştır. 

Araştırmada ele alınan KTK’da doğrusal eşitleme yöntemleri [Tucker (w1=1, w1=0.5), Levine gözlenen puan 

(w1=1, w1=0.5), Levine gerçek puan, klasik konjenerik ve Braun-Holland], eşit yüzdelikli eşitleme yöntemleri 

[C6 polinomial derecesine göre ön düzgünleştirme, beta4 , S 0.05 kübik fonksiyona göre son düzgünleştirme, 

frekans kestirim (w1=1, w1=0.5)] kullanılmıştır. Klasik Test Kuramında en az hata w1=0.5 sentetik evren 

                                                 
1 This article was based on the doctoral thesis that prepared by Ceren Mutluer with the supervision of Prof. Dr. 

Mehtap Çakan. 
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ağırlığıyla Frekans kestirim yönteminden elde edilmiştir. MTK için öncelikle kalibrasyon yöntemine karar 

verilmiş ve bu yöntem Stocking-Lord yöntemidir. Stocking-Lord kalibrasyon yöntemi ile ölçek dönüşümü 

sağlandıktan sonra MTK’daki gerçek ve gözlenen eşitleme yöntemlerinden eşitlenmiş puanlar hesaplanmıştır. 

MTK’daki en az hata gerçek puan eşitleme yönteminden elde edilmiştir. Hata değerleri için Newton-

Raphson’un delta yöntemi ve boostrap yöntemlerine göre hata katsayıları hesaplanmıştır. Her iki kuramdaki 

eşitleme yöntemlerinin hata katsayıları (delta ve boostrap) karşılaştırıldığında MTK’ya dayalı eşitleme 

yöntemlerinin KTK’daki eşitleme yöntemlerinden daha az hataya sahip olduğu ve en az eşitleme hatasına sahip 

olan yöntemin MTK gerçek puan eşitleme olduğu bulunmuştur. KTK’da en az eşitleme hatası frekans kestirim 

(w1=0.5) ve en fazla hata Levine gerçek puan eşitleme yöntemidir.  

Anahtar Kelimeler: Test Eşitleme, Klasik Test Kuramı, Madde Tepki Kuramı, Ortak Maddeli Eşdeğer 

Olmayan Grup Deseni 

1. Introduction 

In education, tests are applied to students for many purposes. For example, the results of the 

exams are used in situations such as making decisions about the performance of individuals and the 

general education level of a country, transition to a higher institution, and placement in a higher 

institution. In these exams, the participants are expected to measure their abilities with less error, 

more accurately, and objectively. Therefore, for the stated objective measurement, the measurement 

process should first be started by converting the application conditions of the tests to standard 

conditions.  

Providing an equating psychological or educational assessment tool is one of the main reasons 

for standardized testing (Cook & Eignor, 1991). High-stake tests or large-scale exams are tried to be 

tested for standardization, and the reliability of the exams is tried to be increased. However, Crocker 

& Algina (1986) stated that errors are always involved in the application measurement results. For this 

reason, there will undoubtedly be an error in the measurements obtained when the dynamics, such as 

the application process, the test itself or the raters are considered. This situation prevents the 

formation of standard conditions. For this reason, asking the same questions over and over in high-

stake tests or large-scale exams will cause the person to remember a question they have solved before 

instead of measuring the expected performance. To prevent this situation, developing different forms 

of the test that will measure the same feature would be appropriate. 

The results obtained in exams such as KPSS (Civil Servant Selection Examination ), YDS (Foreign 

Language Proficiency Exam), ALES (Academic Personnel and Postgraduate Education Entrance Exam) 

and YÖKDİL (Foreign Language Exam of Higher Education Institutions) are valid for several years. The 

results of these exams have an important contribution in situations such as placement in various 

institutions and promotion. In these processes, different forms are used that are claimed to measure 

the same features to prevent marking with remembering and to ensure test confidentiality at different 

sessions. Although the reliability of the test has been ensured by applying different forms, some doubts 

will undoubtedly arise about the equality of the results obtained. Even though the forms were 

prepared with the parallel test logic for different sessions, the same score obtained from the forms 

may not indicate the same skill level for different forms due to the different abilities of the group taking 

the test . Although the test forms prepared for the same purpose based on the same content were 

prepared with the claim of parallel, indices such as test reliability, item difficulty, and standard 

deviation of the test take different values in each application. The scores will vary according to the 

difficulty and ease of the test among the people who take the different forms. Even if the same 

individual gets the same score from different forms, making the same interpretation of his 

performance would not be correct. That is why comparing the scores obtained from the forms is 
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necessary. The applications performed with different tests at different times, the scores of the same 

person and different people cannot be directly compared. The test results used have been in use for 

several years. Since the results of these exams have been used for several years, there is a need to 

equate them in order to compare the scores. 

As Dorans and Holland (2000) stated, comparing measurements from tests performed with 

different methods in different situations has been the essential prerequisite of all sciences. In this 

context, there is a need for a statistical procedure that enables the conversion of the scores obtained 

from test forms prepared for the same content and the same performance. 

For the results obtained from different forms to be used interchangeably, these scores should 

be formed on a common scale or more specifically. A mutual relationship should be established 

between the scores of the two tests. This relationship can be realized with test equating (Zhu, 1998). 

1.1 Test Equating 

When the available literature is reviewed, many definitions for the concept of 'test equating' 

can be found. According to Angoff (1987), test equating is to convert the unit system of one form to 

the unit system of another form. With another definition, establishing the relationships between the 

scores in two or more tests with a statistical method or simply placing these test results on a common 

scale is called “test equating” (Hambleton & Swaminathan, 2013). On the other hand, Kolen & Brennan 

(2014) defined the test equating as a statistical process that allows the scores obtained from these 

forms to be used interchangeably by arranging the differences between test forms with similar content 

and similar difficulty levels. 

Before starting the procedure, certain conditions must be met. When the accessible literature 

is scanned, it has been determined that five conditions must be met (Angoff, 1987; Dorans & Holland, 

2000; Kolen & Brennan, 1995; Kolen & Brennan., 2014; Petersen et al., 1989). These five conditions 

are symmetry, measuring the same features, equal reliability, independence from the group, and 

equality features. 

1.2 Test Equating Designs 

For test equating, it is necessary to start the data collection process. The data collection 

process in equating is called the 'test equating design' (Kolen & Brennan, 2014). The selected design is 

essential for the successful conclusion of the test equating process. For this reason, the design to be 

chosen for equating is expected to be economical and unbiased (Thorndike, 1982). Therefore, these 

designs are ‘random, single group, single group design with counterbalancing, common-item 

nonequivalent group, covariate-design with nonequivalent designs.’  

In the current study, a common item non-equivalent group design was chosen. In this design, 

the same items are included in the forms given to the participants. These are called anchor(common) 

items. These common contents are the same contents that apply in both forms. The order of these 

items in the test is also the same. The number of common items should be at least 20% of the total 

items in the test. Common items should represent the entire item group in the test (Kolen & Brennan, 

2014; Petersen et al., 1989). The common items created are included in each test. Therefore, the 

differences between the two forms can be adjusted depending on the common item statistics, because 

the two groups that receive the forms do not have to be equivalent. 

  



Comparison of Test Equating Methods Based on Classical… 869 

 

1.3. Test Equating Methods  

After the data collection procedure is selected, equating methods should be determined. Test 

equating methods fall into two general categories based on test theories: 

• Equating based on Classical Test Theory (CTT) (Kolen, 1988) 

• Equating based on Item Response Theory (IRT) (Cook & Eignor, 1991) 

In this Classical Test Theory, there are three equating methods. These are mean, linear(LE) and 

equipercentile equating(EE) methods. This study focused on LE and EE methods for CTT.   

LE is based on the difference of scores from their mean divided by their standard deviations. 

The difference from the mean equating is the standard deviation value in the following equation (Kolen 

& Brennan, 2014).  
(𝑋−(𝑋))

(𝑋)
=

(𝑌−(𝑌))

(𝑌)
                                               (1) 

In this equation, X’ defines as the score from X form. “µ(X)” is defined as the mean of X form. 

“Y” defines as the score from the Y form, “µ(Y)” defined as the mean of Y form and “(𝑋)” define as 

the standard deviation of X form and the last symbol of the equation, defines as the standard deviation 

of Y form. The following equation is used to find the percentile rank in the EE. 

 For common item non-equivalent groups- LE equating methods tests containing common 

items were applied to two groups of participants from different samples. This pattern is generally used 

when only one test form is administered at the given test time. Thus, it was emphasized that common 

items should be prepared in a test, in the same order, with the same content and statistical values 

(Kolen, 1988). There are two special cases for common-item non-equivalent group patterns. If the first 

of these is calculated by reflecting the common item on the test scores for all forms, it is indicated as 

an internal (internal anchor) item. Secondly, if these common items are not considered in the test 

score, they are called external (external anchor) items. For this research, internal anchor items were 

chosen.  

In general, common items are used to correct for sample differences. Although this design 

includes two populations, an equating function is typically defined for a single population. Therefore, 

population 1 and population 2 must be combined to define a relationship as if derived from a single 

population. The “synthetic population” (Braun & Holland, 1982). Considering that the weight of 

population 1 is w1, the weight of population 2 is w2, w1 and w2 should be ≥0 following the rule of 

w1+w2=1 (Kolen & Brennan, 2014). 

 In the Tucker-LE method, the groups are tried to be equated by considering the different 

synthetic population weights and the synthetic population weights presented above. According to 

Kolen & Brennan (2014) and Gulliksen (1950), when V is accepted as a common test, the regression of 

X on V assumes the same linear function for population1 and population2. Considering this 

information, the mean and variance values are tried to be estimated using the help of internal anchor 

V scores and synthetic population weights. 

The other equating method is Levine observed score (LevineOS) equating method. This method 

does not address the concept of a synthetic population. Instead, this is an observed score method that 

relates the observed scores on X to the observed score scale on Y. The Levine method states that X, Y, 

and V measure the same things if the correlation between TX and TV, TY and TV, is perfect in population1 

and population2 X, Y, and V (Kolen & Brennan, 2014). 

The other Levine equating method is Levine True score (LevineTS) equating method. 

Developed by Levine (1955), it contains the same assumptions as the Levine observed score equating 

method. The application difference between the observed score and actual score methods is using 
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actual scores in the equation that converts the observed scores on X to the observed scores on the Y 

scale. The assumption that the mean score observed in the CTT is equal to the actual mean score is 

used in this method. 

Congeneric test theory is a sub-dimension of CTT (Lucke, 2005). By using this theory. we can 

equate the scores. In this theory, the observed score equality in this theory is an improved version of 

the linear model in CTT that includes item characteristics. A classical congeneric model is assumed for 

X and V and a single population. It extends the results presented here to Y, V, and Population 1 and 2 

(Kolen & Brennan, 2014).  

Another equating method is Braun-Holland equating. In this method, equating is done using 

the mean and standard deviations that emerge using the assumptions of the frequency estimation 

method. With the assumption of frequency estimation. the X form's mean and standard deviation 

scores can be estimated by the equation below. In this way, the mean and variance values of the X 

form in the synthetic population are made similar to the Y form. The Braun-Holland method is closely 

related to the Tucker method. 

In the EE methods equating function, if the distribution of the form X scores converted to the 

form Y scale is equal to that of the form Y scores in the population, this is an EE function. The EE 

function was developed by defining the scores in form X with the same percentile ranks as those in 

form Y. In other words, the main thing in EE is to transform the score distributions obtained from 

different populations into their equivalents in the same percentile order. According to Angoff (1987), 

the scores obtained in measuring the same feature from the X and Y forms with an equal degree of 

reliability with equipercentile ranks are accepted as equivalent. 

In EE, the following general steps are followed in the graphical and analytical process. First, for 

a certain X score in Form X, there is the percentage of individuals who achieve this score or below; the 

percentage found is equal to the score in form Y, which has the same percentage; the Y form score 

found is the equivalent of the form X score. 

𝑃(𝑋) = 100 [𝐹(𝑋 − 1) +
𝑓(𝑋)

2
]                                     (2) 

In this equation “P(X)” defines as the percentile rank function for X, “F(X)” defines as the 

cumulative distribution for X, “f(X)” defines as the discrete density for X. Although these fluctuations 

in the score distribution are tried to be avoided by using a very large sample, especially when the 

sample is small, these curves are usually smoothed by analytical smoothing methods (Kolen, 1988; 

Livingston, 1993). With smoothing, it is tried to find the relationships in the population and to convert 

the discrete distributions in the sample into a continuous function. 

Smoothing methods are designed to produce smoothing functions with less random errors 

obtained from unsmoothed EE (Hanson et al., 1994). With the use of smoothing methods, the total 

error and random error are reduced. However, it can increase systematic error (Felan, 2002). There 

are two smoothing methods: pre-smoothing and post-smoothing. In pre-smoothing, firstly, the score 

distributions are smoothed. Accurate estimation of score distributions is an important point to be 

considered in the smoothing process. The EE process is done later, Log-linear smoothing based on the 

polynomial function is used for pre-smoothing and the Beta4 method is used to reach the true score 

(Kolen & Brennan, 2014). 

In the post-smoothing method, smoothing is done after obtaining equipercentile equivalents. 

As Tan (2015) stated, the transformed scores are smoothed in the final smoothing method, not the 

distribution of test scores. In this method, cubic intermediate values are used instead of the polynomial 

values in the log-linear method. Therefore, the cubic spline method is used as the final straightening 

method. 
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With using common item non-equivalent groups–EE methods, paying attention to the 

distribution of the total scores and the scores obtained from the common items is important. This 

method requires consideration of the synthetic phase. While trying to equate the total score and 

common item scores obtained in the common item non-equivalent group design with EE, the equating 

functions of the frequency estimation method according to different synthetic population weights 

were used. 

For common item non-equivalent groups–EE methods, the frequency estimation method is 

one of the test equating methods. The frequency estimation EE method described by Angoff (1987). 

Braun and Holland (1982) provide a mean for the cumulative score distribution estimation on Form X 

and Form Y for a synthetic population from data collected using the common item non-equivalent 

group design. The percentiles are obtained from the cumulative distributions and the forms are 

equated with the EE method. 

The equating methods that were shown above are used for the CTT procedure. In IRT, there 

are different equating methods than CTT. IRT was developed against the weak assumptions of the CTT 

(Embretson & Reise, 2013; Lord, 1980). To examine research within the body of the IRT, three 

important assumptions must be met. There are unidimensionality, local independence, and monotonic 

increase in the item characteristic curve (ICC) (Embretson & Reise, 2013). 

The parameter estimations resulting from the IRT parameter estimation operations are usually 

on different IRT scales (Hambleton & Swaminathan, 2013). For example, parameters for IRT models 

are estimated for the X form on which the participant sample in sample 1 is based and for the Y form 

on which the participant sample in sample 2 is based, and these two samples are not equal. Computer 

programs often define the θ scale as analyzed data with a standard deviation of 1 and a mean of 0. In 

this case, talent estimations are made for each group with a mean of 0 and a standard deviation of 1. 

Therefore, conversion to IRT scales is required. In test equating, scale conversion (calibration) 

according to parameter estimations is divided into two "simultaneous calibration" and "asynchronous 

calibration". In simultaneous calibration. the parameters of the forms are estimated together. In 

contrast, the form parameters are estimated separately and located on the same scale with the linear 

equation in asynchronous calibration. A linear equation is used to convert the a and b parameters of 

the scores from each form to the same scale (Stocking & Lord, 1982).  

Scale conversion methods based on IRT are divided into two main headings. These are moment 

methods (mean-mean equating, mean-standard deviation) and characteristic curve methods 

(Haebara, Stocking-Lord). Before starting the test equating process within the body of IRT. the scores 

obtained from the forms are converted to the same scale with moment methods or characteristic 

curve conversion methods. The following process is testing the IRT test equating methods. There are 

two methods. The methods are ‘True Score Equating’ and ‘Observed Score Equating’ (Kolen & Brennan, 

2014).  

After the item parameters are converted to the same scale. IRT true score equating can 

correlate with the correct answer scores on the X and Y forms. In this process, care is taken to ensure 

that the score on a form related to a particular θ is equivalent to the score on another form related to 

this θ. In the true score equating process, three stages must be followed. In the first step, true score τx 

in Form X should be determined. Then the θi value corresponding to the determined true score should 

be found. In the final step, find the true score in form Y corresponding to this θi (Petersen, Cook & 

Stocking, 1983). 
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IRT observed score equating is the distribution estimation of the correct number of items 

observed on each form. The composite binomial distribution for the X form generates the correctly 

answered item score distribution observed for participants at a given ability level. 

1.4. Importance and Aim of The Research  

Comparing scores from different test forms and using them interchangeably justifies 

performing test equating studies. In applications where different forms are used simultaneously in 

large-scale exams such as PISA, test equating studies are emphasized to determine the success 

situations and correctly make the success order. The PISA 2012 data selected as the research data are 

equated by making scale point conversions. The scores obtained for 13 booklets are tried to be 

equating by common items. In the equating process for PISA 2012 data, ability levels are estimated at 

the IRT and the Rasch model is used for the same year data (OECD, 2014). A linking scale was prepared 

to compare scores with PISA 2012 data, PISA 2003, 2006 and 2009 data. It is critical to decide on the 

equating methods in applications where the country success status of PISA data is compared and to 

determine the equating method with the least errors. The most appropriate equating method should 

be determined according to the data structure used in the process and the equating process should be 

completed with the least error. When the literature is examined, there is no common opinion about 

the most appropriate equating method. The equating method with the least error varies in conditions 

such as the pattern used, the ratio of common items, whether the data are simulation or true data, 

sample size and distribution of this sample. It has been seen in the literature that studies using different 

sample sizes and true data generally include equating studies (Özdemir, 2017; Sezer Başaran, 2023; 

Skaggs, 2005; Tan, 2015; Von Davier & Kong, 2005; Wang, et al. 2008) within the body of CTT. Equating 

studies using simulation data or working with larger samples (Brossman & Lee, 2013; Gündüz, 2015; 

Kilmen, 2010; Yurtçu & Güzeller, 2018) were carried out within the scope of IRT, since it is more difficult 

to meet the assumptions and equating conditions in theory. Equating studies based on CTT and IRT are 

quite limited. This research is thought to contribute to the field as a study in which the Rasch model 

specified in the PISA 2012 report is not used. However, the analysis under 3PLM, the equating methods 

within the scope of CTT and IRT are discussed in detail, the most appropriate one with equating scores 

is determined and real data is used. 

Many studies have been designed regarding the intended use of these methods and the 

structure discussed. In this study, it was aimed to equate the mathematics scores in booklet 1 and 

booklet 3 of PISA 2012 with the equating methods based on CTT and IRT by using the pattern of 

unequivocal groups with common items, and to determine the most appropriate equating method 

used. 

Answers to the following questions were sought considering the problem statement created 

for the research. 

1-Which equating method contains the least equating error for the equating scores obtained 

from different booklets of PISA 2012 using Tucker equating method, LevinTS, LevineOS, congeneric 

and Braun-Holland LE methods in CTT? 

2- Which equating method contains the least equating errors for the equating scores obtained 

from the different booklets of PISA 2012 using the frequency estimation EE methods in the CTT? 

3-Which equating method contains the least equating error for the equating scores obtained 

from the different booklets of PISA 2012 using the actual and observed score equating methods, which 

are equating methods based on IRT? 
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4- When the equating method with the least equating error in the CTT and the equating 

method with the least equating error from the IRT are compared, which theory's equating method 

contains the least equating errors? 

2. Method  

2.1. Research Method  

In this study, it was aimed to select the most appropriate equating methods based on CTT and 

IRT-based equating methods using the common-item non-equivalent groups design and PISA 2012's 

mathematics test scores. Since it is aimed to find the one that gives the least error among the different 

equating methods used in this research, this study is descriptive research. Descriptive research is 

suitable for research that aims to reveal the existing situation as it is (Karasar, 2005). 

2.2. Sample 

The population of the study consists of 15-year-old students who participated in PISA 2012. 

When the mathematical literacy scores of the 65 countries participating in the PISA application were 

examined for the study group, four countries in total were selected as the most successful, the most 

unsuccessful, below the mean and above the mean. Since they represent the countries participating 

in PISA 2012, it was deemed appropriate to select these countries. The selection of the countries in 

the working group was carried out as follows. 

*Shanghai/China was chosen as the country with the best performance in PISA 2012 science, 

mathematics and reading skills. 

*Although Peru was the most unsuccessful country for PISA 2012, the country above Peru in 

the order of success. Indonesia, was determined because the booklets in Peru and other countries 

could not match. 

*Turkey, which participated in the PISA 2012 application, was deemed appropriate because it 

was below the mean. 

* Finland, whose overall level of success in PISA 2012 has decreased compared to the previous 

PISA application, is above the mean. Compared to Turkey, which is below the mean. Finland, which is 

above the mean, was chosen because it represents successful countries. 

Purposeful sampling was used as it allows in-depth research in the equating process by 

selecting information-rich situations depending on the purpose of the research (Büyüköztürk et al., 

2008). 

In this study, within the scope of purposive sampling, booklet 1 received 1921 people, and 

booklet 3 received 1900 people. The distribution of the people who took the booklets by country is 

given in Appendix 1. In line with Appendix 1, the scores obtained from a total of 3821 people were 

used in the equating. 

2.3. Data Collection Tool  

Program for International Student Assessment-PISA is one of the most comprehensive 

educational studies in the world organized by the Organization for Economic Co-Operation and 

Development (OECD) (MEB, 2013). With this research, which has been carried out every three years 

since 2000, it is evaluated to what extent 15-year-old students in OECD member countries and other 

participating countries (approximately 90% of the world economy) have the basic knowledge and skills 

necessary to take their place in modern society (MEB, 2013). In the PISA 2012 application, the weighted 
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area is mathematical literacy. Therefore, this study's analyses were carried out completely according 

to the mathematical results. In the PISA application, there are 13 booklets and the answers such as 

true-complete and true-invalid-blank are converted into scores by the mean 500 and standard 

deviation 100 rule. For some of the common items in these 13 booklets, comparing the scores and 

using them interchangeably was possible. In this context, in this study, the process of equating the 

scores obtained from the two booklets (booklet 1 and booklet 3) selected for PISA 2012 is explained. 

When the common item syntax and the overlap of other items are examined, the booklets to be 

equating were determined as booklet 1 and booklet 3. The items in the booklets and their coding are 

presented in Appendix 2. The items in Appendix 2 were created by sorting according to countries and 

booklets. When Appendix 2 is examined, there are 25 items in each booklet, 13 of these items are 

common and 12 are non-common items. In the cognitive test, correct answers were coded as “1”, 

partially correct, incorrect, and “0” for other answers. Since coding based on the dual scoring model 

was preferred in this way, partially correct answers were also evaluated as incorrect answers. 

The equating process is based on equating the new form to the old form. In this research, 

booklet 1 is the new form (form X); booklet 3 is designated as the old form (form Y). In this case, it was 

desired to equate the scores obtained from Booklet 1 to the scores obtained from Booklet 3. 

In the research, PISA-2012 booklet 1 and booklet 3 scores of China, Finland, Turkey, and 

Indonesia were equating. In the booklets used in equating, 12 items were prepared differently for both 

groups. The 13 common items in the booklets were applied to both groups in the same order. For this 

reason, the scores of booklet 1 and booklet 3 can be equating by using common items (13 items). The 

research data was download from http://www.oecd.org/pisa/data/ website. Since the data were 

collected in this way during the research,  ethical permission is not required.  

2.4. Data Analysis 

In the study, first, test equating assumptions were tested. The analysis of the assumptions that 

need to be tested in the equating process before proceeding to the analysis of the data (Appendix 3). 

While examining the equating methods within CTT, besides analytical and graphical solutions, error 

values were examined with the 'Equate-Error' program. While the LE methods in CTT, one of the 

equating methods, were compared among themselves, the equating methods in EE were also 

compared within themselves. Since the equating scores in the equating methods were compared with 

the raw scores. The equating error in all methods was calculated with the WMSE (Weigted Mean 

Square Error) coefficient. In IRT, on the other hand, firstly, the most appropriate calibration method 

was selected. And the scores were converted into a single scale and then the actual and observed score 

methods were compared. To find the appropriate scale conversion method during the calibration 

process. RMSE (Root Mean Square Root Mean Square Error Squares) was used. In the process, RMSE 

statistics were used to select the most suitable equating method from the calibration and equating 

methods in IRT. Error values were also calculated for each method with the Delta method. 

3. Findings 

3.1 The Results of First Research Question 

In Table 1 below, the mean and standard deviation values of the X and Y form are given before 

starting the LE process. 

http://www.oecd.org/pisa/data/
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Table 1. Directly Observed Statistics for Data Used to Equate Form X to Y 

Groups Forms N µ̂ �̂� Covariate Correlation 

1 X 
1921 

11.314 6.076 
19.820 0.957 

1 V 5.965 3.412 

2 Y 
1900 

11.426 6.350 
20.900 0.949 

2 V 6.022 3.469 

Table 1 shows that the mean score of the X form (µ̂) was found to be 11.31, and the mean of 

the Y form score (µ̂) was found to be 11.43. The means for common items are 5.97 and 6.02, 

respectively. While the covariance between the X form scores (total) and the common items in the X 

form was 19.82, the covariance between the Y form scores (total) and the common items in the Y form 

was calculated as 20.90. 

In this study, equating scores were calculated for Tucker internal joint scores w1=1, w1=0.50 

using the LE method. Appendix 4 presents the findings according to the Tucker internal partner 

method. In Appendix 4, firstly, the findings for w1=1 weight are presented. In this case, it is accepted 

as w2=0. Raw scores are given in the first column, equating scores are given in the second column, and 

difference scores are given in the third column. When the equating scores were lower than 0, they 

were converted to 0, and when they were higher than the highest 25 values to be taken from the 

booklets, they were converted to scale scores. This process is called cutting (Kolen and Brennan, 2014). 

Cut-off scores are also used for other equating scores along with this table. In all equating score tables 

after this table, the difference scores were obtained by subtracting the equating scores from the raw 

score. For w1=1, the equating scores for the 0-8 score range are lower than the raw scores, and the 

equating scores in the 9-25 score range are higher than the raw scores. The difference scores calculated 

for the value of 1 chosen as the weight of the synthetic population ranged from -0.571 to 0.193. For 

Tucker w1=0.50, the equating scores for the 0-7 score range are lower than the raw scores, and the 

equating scores in the 8-25 score range are higher than the raw scores. Equating as difference scores 

for w1=0.5. it was seen that the scores ranged between -0.486 and 0.193. In all equating score tables 

after this table, the difference scores were obtained by subtracting the equating scores from the raw 

score. 

The equating scores obtained from the LevineOS equating method, which is another LE 

method that considers the synthetic population weights after the Tucker method, are presented in 

Appendix 5. In Appendix 5, the equating scores are presented in the table against the raw scores 

ranging from 0-25. Firstly, w1=1 and w2=0 are accepted. For the LevineOS equating w1=1 weight, the 

equating scores corresponding to the 0-10 score range are lower than the raw scores, and the equating 

scores for the 11-25 scores are higher than the raw scores. Difference scores for w1=1 vary between 

the lowest -0.522 and the highest 0.347. For the Levine observed weight of w1=0.50, the equating 

scores corresponding to the 0-10 score range are lower than the raw scores, and the equating scores 

for the 11-25 scores are higher than the raw scores. Difference scores range from -0.5431 to 0.3541. 

After LevineOS equating, the equating scores obtained from the LevineTS equating method, in 

which the actual scores are used, are presented in the Appendix 6. In the LevineTS method, equating 

scores were obtained regardless of the weights in the synthetic population (Appendix 6). For this 

equating method, raw scores ranging from 0-25 points were transformed into equating scores. For the 

LevinTS, the equating scores for the 0-11 score range were lower than the raw scores, and for the 12-

25 score range, the equating scores were higher than the raw scores. When the difference scores were 
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examined, the minimum -2.501 and the highest 1.867 values were calculated. Equating scores and 

difference scores obtained with this method differed considerably from the equating scores and raw 

scores obtained from other Tucker and LevineOS methods. 

The results of the equating method using the equating function using the classical congeneric 

model are given in Appendix 7. Braun-Holland equating method was used by making use of the 

statistical relationship of each item with the common item. The equating scores obtained are given in 

Table 2. 

In Appendix 8, the equating scores obtained by the Braun-Holland equating method of the 0-

12 raw score range are given. When the equating score distributions are examined, it is seen that the 

equating scores in the 0-9 point range are lower than the raw scores, and between 10-12 points, the 

raw scores get lower values than the equating scores. The difference scores for Braun-Holland were 

calculated as 1.0665 at the highest and -0.283 at the lowest. 

Equating functions for all LE methods in the study were obtained and the equating scores were 

calculated. Parameter values were found for the calculated equating scores. Calculated parameter 

values are given in Table 2. 

Table 2. Parameter Values Considered When Using LE Method in CTT 

w Equating Methods γ1 γ2 mS(X) mS(Y) σS(X) σ S(Y) 

0.5 Tucker  1.702 1.737 11.363 11.376 6.123 6.304 

0.5 LevineOS 0.976 1.201 11.342 11.391 6.094 6.332 

1 Tucker  1.702 1.737 11.314 11.525 6.0756 6.296 

1 LevineOS 0.976 1.201 11.314 11.357 6.076 6.305 

- LevineTS 0.976 1.201 11.365 11.356 6.106 7.475 

- Congeneric 1.863 1.929 11.316 11.314 6.291 6.576 

- 
Braun-Holland 1.1499 -1.3664 5.3706 4.8094 8.973 11.866 

 
LE methods were applied to PISA 2012 data respectively using a common item non-equivalent 

groups design. The score distributions of LE methods using equating scores are given in Figure 1.  

  



Comparison of Test Equating Methods Based on Classical… 877 

 

Figure 1. Score And Difference Distribution For CTT Equating Methods 

 

 
 

In Figure 1 above, the distribution of the difference between the equating scores and the raw 

scores is given graphically. In all linear methods equating scores tend to have lower values up to 12-13 

raw scores, while equating scores for values greater than 13 raw scores tend to have higher values 

than raw scores. When the graph is examined, it is seen that the equating scores and the deviation 

from the raw scores in the LevineTS method are significantly different and higher than the other 

methods. Equating-Error_wg (v2.0) program was used to determine the error coefficients. Errors were 

calculated using the boostrap method in the program used. Error values for linear methods with 500 

replications are given in Table 3. 

Table 3. WMSE Values Obtained from LE Methods 

LE methods 
Weighs of 
Population 

Error Values (Bootstrap 
method)  

Error Values (Delta 
method) 

Tucker  w1=1 0.160 0.140 

 w1=0.50 0.177 0.154 

LevineOS w1=1 0.171 0.152 

 w1=0.50 0.168 0.150 

LevineTS - 0.345 0.340 

Braun-Holland - 0.229 0.169 

Classical Congeneric  - 0.194 0.164 

 
According to Kendall and Stuart (1977), the delta method is a widely used statistical method 

to derive standard error expressions. The delta method is used to derive the approximate standard 

error of a statistic which is a statistical function for which expressions for standard errors are already 

available. Equating errors were calculated using the Taylor expansion for the delta method in the 

research. 
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When Table 3 is examined. it is seen that the quantitative order of error values in bootstrap 

method and delta method did not change. When analyzed quantitatively, it is seen that the error 

values in the delta method are lower than the values obtained by the bootstrap method. Among the 

LE methods, the least error value was obtained from the Tucker internal (w1=1) LE method. The 

maximum error was calculated from the LevineTS equating method. This result is consistent with the 

graphical representation in Figure 1. Least error w1=1 in Tucker internal equating methods; The 

maximum error is seen when equal and w1=0.5. In the Levine observed equating method, when 

equating errors are ranked according to the weights specified, the least error is w1=0.5; the maximum 

error was found to be w1=1. When ordering from the method with the least errors to the method with 

the most errors, the order is as follows; Tucker internal(w1=1), Levine observed (w1=0.50), Levine 

observed (w1=1), Tucker internal(w1=0.50), classical congeneric, Braun-Holland and LevineTS equating. 

3.2. The Results of Second Research Question 

Smoothing methods should be tried in the equal percentage equating process. In the process, 

pre-smoothing and then post-smoothing methods were applied and equating scores were obtained. 

Equating scores obtained from C6 and beta4 methods in the pre-smoothing process are given in 

Appendix 9. When moments, fit indices and graphical distribution were examined, it was seen that C=6 

polynomial degree was appropriate. In the pre-smoothing process, the equating scores obtained from 

the log-linear methods C6 and beta4 methods are presented in Appendix 9. When the In Appendix 9 

was examined the raw scores of the X form are given between 0-25. Standard error values and equal 

percentile equating scores obtained without pre-smoothing are given. The scores obtained without 

pre-smoothing range from 0.1380 to 24.088. According to the log-LE calculated according to the C=6 

polynomial degree, the equating scores ranged from -0.007 to 25.309, while in beta4 binominal 

equating scores were calculated between -0.164 and 25.044. The distribution of the log-linear method 

was within the standard error band with less deviation than the distribution of the beta4 method. The 

raw score moments for pre-smoothing results are given in Table 4. 

Table 4. Raw Score Moments for Pre-Smoothing 

Test Forms µ σ Skewness Kurtosis 

Form X 11.314 6.074 0.233     2.037 

Form Y 11.426 6.350 0.186     1.935 

X form that equated to Y form     

Unsmoothed 11.423 6.346 0.187     1.934 

Beta4 11.426 6.345 0.1873 1.936 

Log-Linear C=6 11.424 6.344 0.185     1.932 

Table 4 summarizes the unsmoothed, pre-smoothed and suitable polynomial functions. When 

the parameters Table 4 and the parameters obtained after customization are examined, it is seen that 

the values are as close as possible to each other.  

After defining the appropriate polynomial function in the pre-smoothing method, which is one 

of the smoothing methods. S parameters are also tested for the final smoothing. Equating scores 

according to different S values for the final smoothing are given in Appendix 10, which shows that the 
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scores obtained according to different S smoothing degrees. Analytical processes for comparing 

smoothing methods are presented in Table 5 below. 

Table 5. Raw Score Moments Obtained from Smoothing Methods 

Test Forms µ̂ �̂� Skewness Kurtosis 

Form Y 11.426 6.350 0.186 1.935 

Form X 11.314 6.074 0.233 2.037 

X form that equated to Y form  

Unsmoothed 11.423 6.346 0.187 1.934 

Beta4 11.426 6.345 0.187 1.936 

Log-Linear C=6 11.424 6.344 0.185 1.932 

S=0.05 11.426 6.346 0.188 1.935 

 
It is seen that beta4 pre-smoothing method is closer to the Y-form values when the moments 

are examined by looking at the table 5 values to decide which method is the most appropriate 

smoothing in the process of equating the old form to the new form. When the smoothing methods are 

analyzed analytically, it is seen that the cubic spline S 0.05 degree provides closer values for the four 

moments after the beta4 pre-smoothing method. The variation in moments was obtained at most in 

the Log-Linear C 6 pre-smoothing function. After the analytical process. smoothing methods in the 

error band gap were compared in the graphical analysis. The distribution of the scores in the error 

band regarding the score distribution between 0-25 is given in Figure 2 below. 

Figure 2. Distribution of Difference Values of Smoothing Methods According to Standard Error Band 

 

In the figure 2, smoothing methods difference values between positive and negative equal 

percentile error values are given. The pre- and post-smoothing methods used for the raw score 

0,1,2,24 and 25 were out of the error band value. In the raw scores of 3, 6, 14 and 18, the difference 

scores in the beta4 pre-smoothing method were out of the error band gap. The beta4 method, which 

has a score distribution that goes out of the error band range for the nine points specified, shows a 

more uniform distribution compared to other smoothing methods. When the difference score 
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distributions are examined, the second method that shows a uniform distribution in the difference 

score distributions within the error band values is the log-linear C6 method. When the difference 

distribution according to the cubic spline S 0.05 degree is examined, although the distribution is 

sharper than other smoothing methods, the sharpest distribution is obtained in the unsmoothed 

method. 

After the smoothing method was decided, equal percentage equating methods were applied 

to the data set. It was used in the frequency estimation method as the first equal percentile equating 

method. In the frequency estimation method, like the linear methods observed by Tucker and Levine, 

equal percentage equating scores were calculated by using w1=0.5 for the synthetic population and 

w1=1 weights calculated by proportioning the number of persons between the two different forms, 

and the results are presented in Appendix 11. 

 Equating scores are presented using the frequency estimation method in the findings in 

Appendix 11. w1=0.5 lowest score 0 highest score 11.6069; When the weight is w1=1, the lowest score 

is 0 and the highest score is 11.6065. Synthetic population weight w1=0.5; When w1=0.1, negative 

values are generated against raw score 0,1, and 2, while values after raw score 3 (for 4,5,6,7,8,9,10 

and 11) are higher than the specified values, obtained by the estimation method. When using different 

weights of the synthetic population for the raw score 12, values lower than 12 were obtained. 

The mean, variance, slope and intercept values of these two calculated EE and the EE 

calculated without smoothing were calculated for the equating scores. These calculated values are 

presented in Table 6. 

Table 6. Parameter Values Considered When Using EE in CTT 

EE Method 
Synthetic 
Population 
Weights 

Slope Intercept µ(X) µ(Y) σ(X) σ(Y) 

Unsmoothed EE 0.993 -0.307 4.156 3.820 10.890 10.738 

Frequency 
estimation 

w1=0.5 1.150 -1.366 5.371 4.809 8.973 11.866 

  w1=1 1.185 -2.122 5.350 4.215 8.895 12.480 

 

In the equal percentage equating method, firstly smoothing methods are tried. Equal 

percentile equating methods were tried by finding the beta 4 method, which is one of the smoothing 

methods, has less errors than the other methods. Standard error coefficients were calculated to 

estimate which of the EE methods used was more appropriate. Therefore, the Equating-Error_wg 

(v2.0) program was used with 500 replications for each method. Obtained error values are presented 

in Table 7. 

Table 7. Error Coefficients of CTT EE Methods 

EE Methods 
Synthetic Population 
Weights 

Error Values (Bootstrap 
method) 

Error Values (Delta 
method) 

Unsmoothed EE - 0.233 0.045 
Frequency 
estimation w1=0.5 0.159 0.038 

 w1=1 0.120 0.040 
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When Table 7 is examined, it is seen that the error value calculated for the EE method 

without smoothing is 0.2330. When the program outputs are examined, the errors calculated 

with the bootstrap, the standard error of the equating for the frequency estimation method 

using the w1=0.5 weight is 0.159; For the frequency estimation method using the w1=1 weight, 

the standard error of the equating was found to be 0.120. For the new error values calculated 

according to the Taylor series function of the delta method, it was found to be 0.045 for the 

unsmoothed EE 0.040 for the frequency estimation w1=1 weight, and 0.038 for the w1=0.5. 

When the coefficients were examined, it was seen that the frequency estimation method 

using the weight of w1=0.5, one of the equal percentage equating methods applied for the 

common item non-equivalent groups design, equated with less errors. 

The Tucker internal, LevineOS, LevineTS, classical congeneric and Braun-Holland 

equating methods were applied to the scores of the participants who took booklet 1 and 

booklet 3, which contains PISA 2012 data. Equating was made by trying different synthetic 

population weights (w1=0.5; w1=1) in the linear methods observed by Tucker and Levine, one 

of the applied linear methods. In EE, frequency estimation methods (w1=0.5; w1=1) were tried. 

The frequency estimation method has been examined in detail in the context of different 

synthetic population weights (w1=0.5; w1=1) such as Tucker and LevineOS equating methods 

in LE. Equating-Error_wg (v2.0) program calculated the standard error of all CTT equating 

methods. All methods and their equating errors are presented in Table 8 below. 

Table 8. Error Coefficients of Linear and EE Methods in CTT 

  
Equating Methods 

Synthetic Population 
Weights 

Error Values 
(Boostrap method) 

Error Values (Delta 
method) 

LE Tucker  w1=1 0.160 0.140 

  w1=0.50 0.177 0.154 

 LevineOS w1=1 0.171 0.152 

  w1=0.50 0.168 0.150 

 LevineTS - 0.345 0.340 

 Braun-Holland - 0.229 0.169 

  Classical Congeneric - 0.194 0.164 

EE  Unsmoothed EE - 0.233 0.045 

 
Frequency 
Estimation w1=0.5 0.159 0.038 

    w1=1 0.120 0.040 

In the findings in Table 8, the equating methods of the CTT and the equating errors of the 

equating methods are included. When the equating errors are examined, it is seen that the least 

equating error is obtained with the EE method, and the highest equating error is obtained with the 

linear matching method. When the equating error valuesare examined in detail, when a correct order 

is made from the method with the least errors to the method with the most errors, the order is as 

follows; frequency estimation method (w1=0.5), Tucker internal(w1=1), LevineOS (w1=0.5), Tucker 

internal (w1=0.5), classical congeneric, frequency estimation (w1=1), Braun -Holland, EE and LevineTS  

are equating without smoothing. 
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3.3 The Results of Third Research Question 

Before equating in IRT, scale transformation was done by using common items. Moments for 

scale transformation (calibration) and transformation coefficients for characteristic curve 

transformation methods were calculated with ST 2.0. The findings of the transformation constants are 

given in Table 9. 

Table 9. Conversion Coefficients and Conversion Constants Obtained from Calibration Methods 

Calibration Methods A B 

Mean-mean 0.993 -0.039 

Mean-standard deviation 0.986 -0.036 

Stocking-Lord 0.957 0.010 

Haebara 0.954 0.014 

 

The calibration method with the least error scale values among the specified calibration 

methods was determined. Calculated error values are presented in Table 10. 

Table 10. Calculated Error Coefficients for Calibration Methods 

Calibration Methods Error Coefficients 

Mean-mean 0.039 

Mean-standard deviation 0.036 

Stocking-Lord 0.035 

Hebara 0.038 

When the error values in Table 10 are examined, the Stocking-Lord method, one of the 

calibration methods, allows the capabilities to be positioned on the same scale with the least error. 

The highest error was obtained with the mean-mean calibration method. After the calibration method 

was chosen, the abilities were brought to the same scale with the Stocking-Lord calibration method, 

and the scores obtained from the equating methods used in IRT are given in Appendix 12.  

When the findings presented in Appendix 12 are examined, the ability values could not be 

calculated for the 0, 1st, 2nd, 3rd and 25th scores for the TS equating based on IRT. The estimation 

totals of the calculated c parameter values were found to be 3.062 (Appendix 12). For this reason, 

ability values below 3 points were not estimated. When the chart above is examined, it is seen that 

the raw score for true score equating is lower than the scores equal to 15, and it is higher than the Y 

form up to 25 points including 15. The actual score equivalent of 25 raw scores was calculated as 25. 

The distributions according to the difference values between the equating scores and raw scores in IRT 

are presented in the Figure 3 
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Figure 3. Distribution of Difference Scores in IRT Observed and Actual Score Equating Methods 

 

 
 

When Figure 3 above is examined, the difference was calculated as 0, since the equating scores 

for raw scores 0 and 25 in IRT TS equating methods were equal to these extreme values. While there 

was a linear increase in difference scores up to raw score 4 for the IRT TS, the difference scores changed 

and increased rapidly after raw score 4. The difference value for the IRT TS reached the highest value 

at 7 for the raw score for the IRT TS. The raw score showed a significant decreasing trend to 14. Raw 

scores from 14 to 24 equating scores are lower than raw scores. In the IRT OS equating methods, the 

raw score was equating to the values of 0 and 25 by assigning the cutoff score. Just like the IRT TS, the 

raw score tends to increase up to 7, while the raw score tends to decrease up to 14, in the IRT OS 

equating. After the raw score of 14, the equating scores were calculated to be lower than the raw 

score. Equating scores were calculated with the IRT TS and IRT OS equating method equations and 

tried to be interpreted graphically. The standard error of equating of IRT equating methods is 

calculated. All methods and their equating errors are presented in Table 11. 

Table 11. IRT Equating Methods and Error Coefficients of These Method 

IRT Equating Methods Error Coefficients 

IRT TS 0.0111 

IRT OS 0.0118 

 
In Table 11, the error coefficients included in the equating methods considered within the 

scope of the IRT are given. It was seen that the most reliable equating results with the least errors were 

obtained by the IRT TS equating method. The IRT TS equating method is a more appropriate equating 

method with less error than the IRT OS equating. 

3.4. The Results of Fourth Research Question 

Equating methods in CTT and IRT were compared according to the quantities of equating 

errors. All equating methods and their calculated equating errors are given in Table 12 by grouping 

them. The error values grouped according to the measurement theories and equating methods used 

are presented in Table 12. 
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Table 12. Error Coefficients of Equating Methods for CTT and IRT 

Theory Equating  Methods 
Synthetic Population 
Weights 

Error Values  

CTT LE  Tucker  w1=1 0.1604 (Bootstrap) 

    0.1404 (Delta) 

   w1=0.50 0.1765 (Bootstrap) 

    0.1537 (Delta) 

  LevineOS w1=1 0.1709 (Bootstrap) 

    0.1515 (Delta) 

   w1=0.50 0.1684 (Bootstrap) 

    0.1502 (Delta) 

  LevineTS - 0.3448 (Bootstrap) 

    0.3403 (Delta) 

  Braun-Holland - 0.2286 (Bootstrap) 

    0.1689 (Delta) 

  Classical Congeneric - 0.1943 (Bootstrap) 

      0.1636 (Delta) 

 EE  Unsmoothed EE - 0.2330 (Bootstrap) 

    0.0445 (Delta) 

  Frequency Estimation  w1=0.5 0.1589 (Bootstrap) 

    0.03814 (Delta) 

   w1=1 0.1995 (Bootstrap) 

        0.04012 (Delta) 

IRT  IRT TS - 0.0111 

    IRT OS - 0.0118 

 
When Table 12 is examined, it is seen that all the equating methods used for this study of the 

two measurement theories used have equating error values. While determining the most appropriate 

method for equating in other sub-problem statements before this sub-problem statement, Table 12 

was examined in line with the comments made. First of all, when the methods in CTT were examined, 

it was found that the Tucker equating method, which used w1=1 synthetic weight from LE methods, 

obtained scores equating with the least error, and the least incorrectly equating scores were obtained 

with the frequency estimation method, which was one of the EE methods, where w1=0.5 synthetic 

weight was used. When CTT equating methods are compared by looking at their error values, it is seen 

that the frequency estimation method, which is one of the EE methods, equates with less errors. For 

LevineTS equating, which is one of the LE methods, the scores equaled with the most errors were 

obtained. Examination of the TS and OS equating methods calculated from IRT showed that the IRT TS 

equating achieved equating scores with fewer errors. As for the error coefficients in Table 12, the 

equating methods belonging to IRT are obtained with less errors than all the equating methods in CTT. 

When these methods, which are equated with the least error in both theories, are examined in terms 

of error quantities, it is seen that the most appropriate equating scores are obtained with the least 

error in the IRT TS method. 
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4. Discussion and Conclusion  

4.1. Conclusions and Discussions on The First Research Question  

Equating error values were examined for LE methods based on CTT. When the error values 

obtained are compared quantitatively, the order of the methods with the least errors to the methods 

with the most errors is as follows; Tucker internal (w1=1). LevineOS (w1=0.5), LevineOS (w1=1), Tucker 

internal (w1=0.5), classical congeneric, Braun-Holland, and LevineTS equating. When the equating error 

values are examined, it is seen that the most appropriate equating method with the least error for LE 

methods is Tucker internal (w1=1), and the Levine total score equating method has the highest error. 

One of the LE methods, Levine's true score equating method was found to be the worst 

equating method. For the Levine true score, it was observed that the equating scores at the extreme 

values were more differentiated than the raw score, and the calculated difference values were 

different compared to other linear methods. Although Levine's actual mean score and the observed 

mean score are derived from the assumption that the observed mean score is similar, it is seen that 

the estimated error value is too high due to the difference values obtained in this study. Theoretically, 

the true score is obtained by adding the plus and minus error value to the observed score (Spearman, 

1907). It is striking that the difference values between the equating score and the raw score for the 

LevineTS in the research are large. When the distribution of the difference scores is examined, the fact 

that the change is high is explained in the findings section of the research. When the variability of the 

difference values is interpreted for the error distribution, it can be concluded that the Levine true score 

is the method with the most errors. Similar results in the literature are in line with the results of the 

study conducted by Chen et al., (2011). It was concluded that the difference scores for the LevineTS 

did not produce a linear function but increased the error value. Contrary to this result, Hanson et al., 

(1993) found in their study that the Levine true score had less error than the Levine observed, İnal & 

Akın Arıkan (2017) found the similar result that Tucker has less equating error than Levine methods. 

4.2. Conclusions and Discussions on The Second Research Question 

For the second research question of the research, EE methods related to CTT were applied. 

Before the EE method, it was decided which of the smoothing methods was appropriate. In the 

smoothing methods. C 6 polynomial function and beta4 binomial method were found suitable for pre-

smoothing, while S 0.05 degree was chosen for final smoothing. It was investigated which smoothing 

method had less errors and it was seen that the best smoothing method was beta4 binominal pre-

smoothing, while the C 6 degree pre-smoothing method contained the most errors. The information 

that the beta4 binomial function used in the pre-smoothing for EE has less errors is in line with the 

results of the study by Livingstone (1993), Kahraman (2012) and Tan (2015). 

Equating equations were found by using the frequency estimation method (w1=1; w1=0.5). 

Equating scores were calculated with the obtained equations. When the equating scores calculated in 

the frequency estimation method for different weights were examined, the equating scores calculated 

against the raw scores of 0,1 and 2 were equating to 0 using the cut-off score. For all EE methods used, 

a strong positive correlation was found between equating scores and raw scores. Equating error values 

were examined for EE equating methods based on CTT. When the error values found are compared 

quantitatively, the order of the methods with the least errors to the methods with the most errors is 

as follows; frequency estimation (w1=0.5), frequency estimation (w1=1) and unsmoothed EE. When the 

error values of the EE methods in the CTT were examined, it was seen that the most appropriate 
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equating method with the least error was frequency estimation (w1=0.5) and the most error was the 

non-smoothed EE method. 

The results obtained from the second research question of the research Hagge et al., (2011), 

Livingstone et al., (1990), Livingstone (1993), Livingston and Feryok (1987), Skaggs (2005). This is in line 

with the studies of Kolen (1988). In these studies, it was stated that the frequency estimation method 

produced more accurate results than other EE methods. It has been determined that equating scores 

calculated by frequency estimation method tend to give more accurate results when a large sample is 

used within the scope of the research (Livingstone & Feryok, 1987). 

As a LE method, equating scores were obtained by using Tucker internal, LevineTS, LevineOS, 

classical congeneric model and Braun-Holland equating methods. In Classical Test Theory, frequency 

estimation and unsmoothed EE methods were used for EE, and equating scores were calculated. 

Equating score distributions are explained in the results of the first and second research questions 

above. When the presented error values are compared quantitatively, the order of the methods with 

the least errors to the methods with the most errors is as follows; frequency estimation (w1=0.5), 

Tucker internal(w1=1), LevineOS (w1=0.50), LevineOS (w1=1), Tucker internal (w1=0.5), classical 

congeneric, frequency estimation (w1=1), Braun-Holland and LevineTS equating. When the equating 

error values in the CTT were examined, it was seen that the most appropriate equating method with 

the least error was frequency estimation (w1=0.5), and the LevineTS equating method with the most 

errors. When the CTT equating methods used are compared, it is concluded that EE is suitable with 

less errors. 

Kolen and Brennan (1995), Mutluer and Nartgün (2017), Pektaş and Kılınç (2016) and von 

Davier (2008), found in their research that EE produces more accurate results than LE method and the 

result of this research shows similarity with the result that it has fewer errors. The results of this 

research do not overlap with the results of Wang. et al. (2008), or Kelecioğlu and Gübeş (2013). In 

these studies, it was understood that the LE method produced more accurate results. In the literature, 

Kolen and Brennan (2014) found that EE produces more accurate results in large samples; It has been 

clearly stated that the difficulty differences between the forms make more harmonious equating since 

they involve the conversion process with percentiles in the drawn curves. Çörtük (2022) found the EE 

method is more accurate for equating process. 

4.3. Conclusions and Discussions on The Third Research Question 

The error coefficients of the calibration methods used in the same scale conversion process 

were calculated. When the calculated error coefficients were compared quantitatively, the highest 

error was obtained from the mean-mean method, and the least error was obtained from the Stocking-

Lord method. Aksekioğlu (2017), Demirus (2015), Karkee and Wright (2004), Kilmen (2010), Spearman 

(1907), Stocking and Lord (1982) and Yurtçu and Güzeller (2018). It was stated that scale conversion 

processes based on item characteristic curves are more appropriate. It has been stated that the 

characteristic curve methods have a structure that eliminates the mismatch (Stocking & Lord, 1982). 

Stocking-Lord is more durable in the differences of the ability parameter (Keller, 2007). On the 

contrary, it has been observed in the studies conducted by Gök (2012), Gündüz (2015) and Tanberkan 

Suna (2018) that the mean-mean calibration method is also suitable. With Salmaner Doğan (2022) 

research found that Stocking-Lord calibration method is suitable when the difficulty among the forms 

is less.  

After determining the appropriate calibration method, true and observed score equating 

based on IRT was made. When the equating error values were compared quantitatively, it was 
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concluded that the IRT true score equating method produced a more robust solution and equated with 

less errors. 

When the available literature is scanned, IRT is observed in the studies of Aksekioğlu (2017), 

Hagge et al. (2011), Han et al. (1997), Lord and Wingersky (1984), Tanberkan Suna (2018). They found 

that the score had fewer equating errors. In the true score equating process, it is accepted that the 

true score is a combination of the observed and true score. It assumes that individuals at the same 

ability level have the same true score in the equating process. In the observed score equating, a 

particular group is focused. The score distribution of this group is placed on a common scale by 

ensuring that its characteristics are equal (von Davier, 2008). Based on this explanation, Gündüz (2015), 

and Kumlu (2019) IRT continued to work with the TS equating method, and IRT reported that the true 

score had fewer errors as a result of the study. Keller (2007) stated in their studies that IRT parameters 

calculated in calculations related to the actual score give more consistent results. In addition, Kolen & 

Brennan (1995) explained that the superiority of the IRT TS equating method over the IRT OS equating 

method is that it is easy to calculate, and the transformation obtained can be obtained independently 

of the group's ability distribution, and its limitation is that it equates the true scores that do not exist 

in practice. 

4.4. Conclusions and Discussions on The Fourth Research Question 

In this research, equating methods within the scope of CTT and IRT are included. Among the 

CTT LE methods, LevineTS equating method was the worst equating method, while the Tucker equating 

method with a synthetic population weight of 1 was determined as the best equating method with the 

least error. Among the CTT and EE methods, it was determined that the frequency estimation method, 

which was processed with the synthetic population weight of 0.5, was the worst equating method with 

the highest equating error value without smoothing, and the best equating method with the least 

error. When the TS and OS methods are taken into consideration and IRT equating methods are 

compared, it has been determined that the TS equating method with the least error in IRT is a more 

appropriate and powerful equating method. When the error values of the equating methods in CTT 

and IRT are examined quantitatively, the order from the one with the least error to the equating 

method with the most error is as follows; IRT TS, IRT OS, frequency estimation (w1=0.5), frequency 

estimation (w1=1), Tucker (w1=1), LevineOS (w1=1), LevineOS (w1=0. 50), Tucker (w1=1), classical 

congeneric, Braun-Holland, unsmoothed EYE, LevineTS. 

Comparison of theories has been considered as the aim of many studies, Petersen et al. (1983), 

Lord and Wingersky (1984), Han et al. (1997), Hagge et al. (2011) Liu and Kolen (2011) and also 

Tanberkan Suna (2018) compared IRT and CTT equating methods in their study. It has been seen that 

the results obtained and the results of this research are in parallel with the IRT equating methods, 

giving more accurate results with less errors. On the other hand, the results don’t support Olaginan et 

al (2022) research. The difference in this research is mainly about the sample size. If the sample size is 

not big enough, IRT equating process includes large error values. 

In this part of the research, suggestions are explained for those who will work on test equating. 

As a new study subject. scores from different booklets can be recalculated with the IRT TS equating 

method as a result of this research. Although PISA focuses on a different area every three years, the 

scores obtained from the learning area outside the target learning area of PISA on the date specified 

during the research process can be equated. In this research, a study was carried out on 4 countries in 

line with the purpose of the research. It is recommended to perform a new equating study with a new 

sample representing the 65 countries participating in the PISA 2012 application or with all the scores 



Comparison of Test Equating Methods Based on Classical… 888 

 

related to the universe. In PISA, the scores of individuals are calculated over the Rasch model (OECD, 

2014). In the synchronization process used, 3PLMs were used for IRT. According to the results of the 

research, it is recommended to recalculate student scores using 3PLM and recalculate the test 

equating process and success order. Within the scope of the study, it was observed that the conversion 

process to scale scores with the Stocking-Lord method in the IRT-based equating process led to 

equating with the least error. For this reason, it is recommended that practitioners conduct equating 

by performing scale conversion with Stocking-Lord. Based on the results of this research, which was 

carried out to compare the theoretical equating methods, it is recommended to use this method in the 

case of being free from errors in the IRT TS equating method and in the equating of scores for different 

situations. 
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Geniş Özet 

Giriş 

Farklı zaman ve koşullarda yapılan sınavlardan elde edilen sonuçlar kişilerin kuruma 

yerleşmesi, kurumda yükselmesi, eğitim düzeyi hakkında bilgi vermek amaçlı kullanılmaktadır. Bu 

nedenle yapılan sınav sonuçları birden fazla yıllarda da geçerliği korunduğu için test sürecinin standart 

uygulama koşullarına sahip olması istenir. Bu standart koşullarda test sonuçlarının karşılaştırılabilmesi 

için eşitlenmesi ve birbiri yerine dönüşümü sağlanmalıdır. Standart ve eşitlenebilir özellikler için farklı 

sınav sonuçlarının birbiri yerine kullanılması için istatistiksel süreç test eşitleme ile mümkündür. Bu 

araştırmada ortak maddeli eşdeğer olmayan grup deseni kullanılarak puanlar eşitlenmeye çalışmıştır. 

Bu araştırmada KTK ve MTK bünyesindeki eşitleme yöntemleri karşılaştırılarak en az hata değerinin 

hangi eşitleme yönteminden elde edildiği belirlenmeye çalışılmıştır. Klasik test kuramında lineer 

eşitleme Tucker (w1 = 1, w1 = 0.5), Levine gözlenen puan (w1 = 1, w1 = 0.5), Levine gerçek puan, klasik 

konjenerik ve Braun-Holland yöntemleri kullanılmıştır. Klasik Test Kuramına bağlı eşityüzdelikli 

eşitleme (EYE) yöntemleri için düzgünleştirilmeden EYE, ön düzgünleştirme (C 6 polinom derecesi, 

beta4), son düzgünleştirme (S = 0.05). frekans kestirim yöntemleri seçilmiştir. Madde Tepki Kuramına 

dayalı eşitleme yapabilmek için öncelikle kalibrasyon yapılmıştır daha sonra gerçek ve gözlenen puan 

eşitleme yöntemleri uygulanmıştır.  

Yöntem 

Çalışmada KTK ve MTK’daki eşitleme yöntemlerinden en az hata değerine sahip olan eşitleme 

yönteminin belirlenmesine odaklanıldığından betimsel araştırma niteliği taşımaktadır. 

Bu araştırmada PISA 2012 testine katılan en iyi performans gösteren ülke olarak Şangay / Çin, 

en başarısız ülke (kitapçık eşleşmesi koşulu için) Peru, ortalama altında yer alan Türkiye, genel başarı 

düzeyindeki Finlandiya ülkelerinde bulunan ve kitapçık1 (N = 1921) - kitapçık3 (N = 1900) için toplam 

3821 kişi bulunmaktadır. Kitapçık 1 ve kitapçık 3 için 13 madde ankor madde olarak. 12 madde ise 

ankor olamayan madde olarak ele alınmıştır. 

KTK’daki eşitleme yöntemlerinden en az hata değerine sahip olanını belirlemek için WMSE 

(Weigted Mean Square Error - Ağırlıklandırılmış Hata Kareleri Ortalaması - AHKO), MTK’da ise 

kalibrasyon sürecindeki ölçek dönüştürme yöntemleri ve eşitleme yöntemlerinin en az hata değerini 

belirlemek için RMSE (Root Mean Square Error- Hata Kareleri Ortalamasının Karekökü) katsayıları 

hesaplanılmıştır. Belirtilen hata katsayıları boostrap kökenli bir sonuç verdiği için Newton-Raphson 

yöntemine dayalı Delta hata katsayıları da ayrıca raporlaştırılmıştır. 

Bulgular 

Araştırma sürecine öncelikle eşitleme varsayımları kontrol edilerek sürece başlanmıştır. Tüm 

eşitlenmiş puanlarda ham puan uç değerlerine sabitlenerek fark değerleri hesaplanmıştır. Fark 

değerleri, ham puanlardan bu değere karşılık gelen eşitlenmiş puan çıkartılarak hesaplanmıştır. 
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KTK’daki Tucker yöntemi öncelikle w1 = 1 sentetik evren ağırlığına göre ele alınmıştır. 0 - 8 puan 

aralığında eşitlenmiş puanlar, ham puanlardan; 9 - 25 puan aralığında ise ham puanlar eşitlenmiş 

puanlardan daha düşük değer almıştır. Sentetik evren ağırlığı olarak seçilen 1 değeri için hesaplanan 

fark puanları -0.571 ile 0.193 arasında değişmektedir. Tucker lineer yönteminde ikinci ağırlık olarak w1 

= 0.50’e göre eşitlenmiş puanlar hesaplanmıştır. 0-7 puan aralığında eşitlenmiş puanlar, ham 

puanlardan; 8 - 25 puan aralığında ise ham puanlar eşitlenmiş puanlardan daha düşük değer almıştır. 

Tucker lineer eşitlemede w1 = 0.5 sentetik evren ağırlığı için fark puanları -0.4856 ile 0.1929 arasında 

değer almıştır.  

Levine gözlenen eşitleme w1 = 1 sentetik evren ağırlığında 0-10 puan aralığında eşitlenmiş 

puanlar, ham puanlardan; 11 - 25 puan aralığında ise ham puanlar eşitlenmiş puanlardan daha düşük 

değer almıştır. Levine w1 = 1 için fark puanları ise en düşük -0.5219 ve en yüksek 0.3465 arasında 

değerlerini almıştır. Levine gözlenen eşitleme w1 = 0.5 sentetik evren ağırlığında 0 - 10 puan aralığında 

eşitlenmiş puanlar, ham puanlardan; 11 - 25 puan aralığında ise ham puanlar eşitlenmiş puanlardan 

daha düşük değer almıştır. Levine w1 = 0.5 için fark puanları ise en düşük -0.543 ile en yüksek 0.354 

arasında değerlerini almıştır. 

Levine gözlenen puan eşitlemeden sonra gerçek puan eşitleme yöntemi kullanılmış ve bu 

yöntemde sentetik evren ağırlıkları kullanılmamıştır. Levine gerçek eşitlemede 0 - 11 puan aralığında 

eşitlenmiş puanlar, ham puanlardan; 12 - 25 puan aralığında ise ham puanlar eşitlenmiş puanlardan 

daha düşük değer almıştır. Levine gerçek puan eşitlemede fark puanları ise en düşük 2.5013 ve en 

yüksek 1.8666 değerleri hesaplanmıştır 

Klasik konjenerik eşitleme yönteminde 0 - 11 puan aralığında eşitlenmiş puanlar, ham 

puanlardan; 12-25 puan aralığında ise ham puanlar eşitlenmiş puanlardan daha düşük değer almıştır. 

Ham puanlar ve eşitlenmiş puanlar arasındaki fark puanları ise -0.4542 ile 0.3667 arasındadır.  

Braun-Holland yöntemi kullanıldığında 0-9 puan aralığında eşitlenmiş puanlar ham puanlardan; 

10-25 puan aralığında ise ham puanlar eşitlenmiş puanlardan daha düşük değer almıştır. Braun-Holland 

yöntemindeki fark puanları 1.067 ile -0.283 değerleri arasında değişkenlik göstermiştir. Lineer eşitleme 

yöntemlerinde hata değeri en az Tucker içsel (w1=1) için en fazla ise Levine gerçek puan eşitleme 

tarafından üretilmiştir. 

Lineer eşitleme yönteminden sonra KTK’da eşityüzdelikli eşitleme yöntemlerine göre 

eşitlenmiş puanlar elde edilmiştir. Ön düzgünleştirme yapılmadan elde edilen puanlar 0.138 ile 24.088 

arasında değişmektedir. Öncelikle düzgünleştirme süreci için ön düzgünleştirme yöntemlerinden log-

lineer polinom derecesine karar verilmiştir. Momentlerin uyumu hem analitik hem de grafiksel olarak 

incelendiğinde C 6 polinominal dereceye göre log-lineer ön düzgünleştirme yöntemi kullanılmıştır. C 6 

polinominal derecede log-lineer ve beta4 yöntemlerine göre ön düzgünleştirmede 0-9 puan aralığında 

eşitlenmiş puanlar ham puanlardan; 10-25 puan aralığında ise ham puanlar eşitlenmiş puanlardan daha 

düşük değerler alınmıştır. C 6 polinominal derecesine eşitlenmiş puanlar -0.007 ile 25.309 arasında 

değişirken. beta4 binominal eşitlemede ise -0.1637 ile 25.044 arasında değerlere sahiptir. Son 

düzgünleştirme için analitik ve grafiksel çözüm incelendiğinde kübik spline S 0.05 derecesi en uygun 

eşitleme derecesi belirtmektedir. S 0.05 son düzgünleştirme sürecinde 0 - 8 puan aralığında eşitlenmiş 

puanlar ham puanlardan; 9-25 puan aralığında ise ham puanlar eşitlenmiş puanlardan daha düşük 

değerler alınmıştır. 

Frekans kestirim yöntemi için sentetik evren ağırlığı w1 = 0.5; w1 = 0.1 için 0 - 2 puan aralığında 

eşitlenmiş puanlar ham puanlardan; 3 - 12 puan aralığında ise ham puanlar eşitlenmiş puanlardan daha 

düşük değerler alınmıştır. Ham puan 12 için sentetik evrenin farklı ağırlıkları kullanıldığında ise 12’den 

daha düşük değerler elde edilmiştir.  
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KTK’na bağlı eşitleme yöntemlerinin eşitleme hataları incelendiğinde en düşük hata 

değerinden en yüksek hata değerine doğru sıralama şu şekildedir; frekans kestirim yöntemi (w1 = 0.5), 

Tucker içsel (w1 = 1), Levine gözlenen (w1 = 0.5), Tucker içsel (w1 = 0.5), klasik konjenerik, frekans 

kestirim (w1 = 1), Braun-Holland, düzgünleştirme yapılmadan EYE ve Levine gerçek puan eşitlemedir. 

MTK’ya dayalı eşitleme yapmak için öncelikle aynı ölçek üzerinde puanların yerleştirilmesi 

gerekmektedir. Bu sebeple kalibrasyon yöntemleri incelenmiş ve en az hata ile Stocking-Lord 

kalibrasyon yöntemine karar verilmiştir. MTK gerçek ve gözlenen puan eşitleme yöntemlerinde 0 - 15 

puan aralığında puan aralığında eşitlenmiş puanlar ham puanlardan; 16 - 25 puan aralığında ise ham 

puanlar eşitlenmiş puanlardan daha düşük değerler alınmıştır. Hata katsayıları incelendiğinde en düşük 

eşitleme hatası MTK gerçek puan eşitleme yöntemindedir. Kuramsal olarak eşitleme yöntemleri 

incelendiğinde MTK gerçek ve gözlenen eşitleme yöntemleri, KTK’daki tüm eşitleme yöntemlerinden 

daha az hata ile eşitlenmiş puanların elde edildiği görülmektedir 

Sonuç ve Öneriler 

KTK bünyesindeki lineer ve eşityüzdelikli ve MTK gerçek ve gözlenen puan eşitleme yöntemleri 

kullanılarak PISA 2012 matematik testi kitapçık1 ve kitapçık3 test puanları eşitlenmiştir. Lineer 

eşitlemede Tucker w1=1, w1=0.5 sentetik evren ağırlıkları, Levine gözlenen w1 = 1, w1 = 0.5 sentetik 

evren ağırlıkları, Levine gerçek, klasik konjenerik, Braun-Holland yöntemleri kullanılmıştır. Lineer 

eşitleme yöntemlerinde en az eşitleme hatası sentetik evren ağırlığı w1= 1 Tucker içsel yöntemi ile en 

fazla hata ise Levine gerçek puan eşitleme yöntemlerinden elde edilmiştir. 

Eşityüzdelikli eşitlemede ise düzgünleştirme yapılmadan, ön düzgünleştirme için C 6 

polinominal derecesine dayalı log-lineer, beta4, son düzgünleştirme S 0.05 kübik spline derecesi ve w1= 

1, w1= 0.5 sentetik evren ağırlıkları kullanılarak frekans kestirim yöntemleri ile eşitlenmiş puanlar 

hesaplanmıştır. Bu eşitleme yöntemleri arasında frekans kestirim (w1= 0.5) olduğu, en fazla hatanın 

düzgünleştirme yapılmamış EYE yöntemi olduğu görülmüştür. KTK’ya dayalı lineer ve eşityüzdelikli 

eşitleme yöntemleri hata değerlerine göre kıyaslandığında en az hata eşityüzdelikli eşitleme 

yönteminde olduğu görülmüştür. 

MTK’da eşitleme yönteminden önce kalibrasyon yöntemine karar verilmiştir. En uygun 

kalibrayon yöntemi en az hata ile Stocking-Lord ile sağlanmıştır. MTK gerçek ve gözlenen puan eşitleme 

yöntemleri karşılaştırıldığında en az hata MTK gerçek puan eşitleme yöntemidir. MTK gerçek puan 

eşitleme yönteminin daha robust bir çözüm ürettiği, daha az hata ile eşitleme yaptığı sonucuna 

varılmıştır. İncelenen tüm kuramlara dayalı eşitleme yöntemleri en az hataya göre sıralandığında MTK 

gerçek puan eşitleme, MTK gözlenen puan eşitleme, frekans kestirim (w1= 0.5), frekans kestirim (w1= 

1), Tucker (w1= 1), Levine gözlenen (w1= 1), Levine gözlenen (w1=0.50), Tucker (w1= 1), klasik 

konjenerik, frekans kestirim (w1= 1), Braun-Holland, düzgünleştirme yapılmamış EYE, Levine gerçek 

puan eşitleme yöntemi şeklindedir. Bu çalışma bulguları doğrultusunda ortak maddeli eşdeğer olmayan 

gruplar deseninde yapılan eşitleme sürecinde en az hata ile MTK gerçek puan eşitleme yönteminden 

elde edilmiştir.  

Bu araştırmadan elde edilen sonuçlarla birlikte PISA 2012 için farklı kitapçıklar farklı ortak 

madde oranları gözetilerek incelenebilir. PISA 2012’de yer alan diğer okuryazarlık türleri (fen ve 

teknoloji ve okuma becerisi) için eşitleme süreçleri raporlaştırılabilir. Çalışma verilerinde çoklu 

puanlama 0-1 matrisine dönüştürülerek incelenmiştir. Başka bir çalışmada çoklu puanlamaya dayalı 

olarak eşitleme yöntemleri kıyaslanabilir. Araştırmada ele alınan ortak maddeli eşitleme yöntemleri 

yerine okuryazarlık puanları ile düşük, orta ve yüksek korelasyon veren kodeğişkenlerine bağlı eşitleme 

süreci ele alınabilir. PISA 2012 testinde yer alan tek boyutluluk varsayımının ihlalini vurgulayarak gerçek 
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verilere dayalı simülasyon yapılarak tek boyutluluk ihlalinde eşitleme yöntemleri kıyaslanabilir. 

Araştırmada çoktan seçmeli test maddeleri veri olarak değerlendirilmiştir. Karma test formatında 

eşitleme yöntemleri denenebilir. Ortak maddenin testin toplam madde sayısına göre farklı oranlarına 

göre değiştirilip en uygun ortak madde oranı ve bu süreçte kullanılacak eşitleme yöntemine karar 

verilebilir. 

Appendixes 

Appendix 1-Distribution of Students Receiving Booklets by Countries 

 Booklet 1 Booklet 3 

China (QCN) 442 439 
Indonesia (IDN) 424 417 
Finland (FIN) 683 669 
Turkey (TUR) 372 375 

Total 1921 1900 

General Total 3821  
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Appendix 2 

Comparison of parameters according to t test 

Parameter Booklets n x Sx df t p 

a Booklet 1 13 2.198 0.583 24 0.243 0.769 

 Booklet 3 13 2.138 0.661    

b Booklet 1 13 0.458 0.796 24 0.312 0.468 

 Booklet 3 13 0.369 0.644    

c Booklet 1 13 0.129 0.093 24 0.513 0.991 

  Booklet 3 13 0.109 0.1    

Comparison of mean score according to t test 

Booklets n X Sx df t p 

Booklet 1 1921 11.31 6.075913 3819 0.554 0.58 

Booklet 3 1900 11.43 6.351331       

Reliability Coefficients of Booklets 

 Booklet 1 Booklet 3 

KR-20 0.902 0.910 

Fisher Z Coefficients of Booklets 

 Booklet 1 Booklet 3 

Fisher Zr 1.472 1.528 

 

 

Booklets Dimension χ2 (sd) RMSEA GFI CFI NNFI SRMR λ ε 

Booklet 
1 

Unidimension 
11890.546  
(275) 

0.05 0.991 0.969 0.952 0.0531 0.42-0.90 0.10-0.60 

Booklet 
3 

Unidimension 
11821.59  
(275) 

0.05 0.99 0.965 0.95 0.0517 0.43-0.90 0.10-0.60 
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Appendix 3-Items and Codes in Booklets  

Item type Booklet Items Codes of 
Items 

Non-
anchor/common 
items 

Booklet 1 MATH-P2012- An advertising Column Q1 PM00GQ01 

MATH-P2012-Speeding Fines Q1 PM909Q01 

MATH-P2012-Speeding Fines Q2 PM909Q02 

MATH-P2012-Speeding Fines Q3 PM909Q03 

MATH-P2012-Roof Truss Design Q1 PM949Q01T 

MATH-P2012-Roof Truss Design Q2 PM949Q02T 

MATH-P2012-Roof Truss Design Q3 PM949Q03T 

MATH-P2012-Migration Q1 PM955Q01 

MATH-P2012-Migration Q2 PM955Q02 

MATH-P2012-Migration Q3 PM955Q03 

MATH-P2012-Bike Rental Q2 PM998Q02T 

MATH-P2012-Bike Rental Q4 PM998Q04T 

Booklet 3 MATH-P2000-Pipelines Q1 PM273Q01T 

MATH-P2003-Lotteries Q1 PM408Q01T 

MATH-P2003-Transport Q1 PM420Q01T 

MATHP2003-TheThermometer Criket Q1 PM446Q01 

MATHP2003-TheThermometer Criket Q2 PM446Q02 

MATH-P2003-Tile Arrangement Q1 PM447Q01 

MATH-P2003-The Fence Q1 PM464Q01T 

MATH-P2003-Telephone Rates Q1 PM559Q01 

MATH-P2003-Computer Game Q1 PM800Q01 

MATH-P2003-Carbon Dioxide Q1 PM828Q01 

MATH-P2003-Carbon Dioxide Q2 PM828Q02 

MATH-P2003-Carbon Dioxide Q3 PM828Q03 

Anchor items  Booklet 1 ve Booklet 3 MATH-P2012-Apartment Purchase Q1 PM00FQ01 

MATH-P2012-Drip Rate Q1 PM903Q01 

MATH-P2012-Drip Rate Q3 PM903Q03 

MATH-P2012-Charts Q1 PM918Q01 

MATH-P2012-Charts Q2 PM918Q02 

MATH-P2012-Charts Q5 PM918Q05 

MATH-P2012-Sailing Ships Q1 PM923Q01 

MATH-P2012-Sailing Ships Q3 PM923Q03 

MATH-P2012-Sailing Ships Q4 PM923Q04 

MATH-P2012-Sauce Q2 PM924Q02 

MATH-P2012-Revolving Door Q1 PM995Q01 

MATH-P2012-Revolving Door Q2 PM995Q02 

MATH-P2012-Revolving Door Q3 PM995Q03 
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Appendix 4- Equating Scores and Difference Values Obtained Using the Tucker Internal Partner 

Equating Method 

Tucker-Internal 

Raw Scores Equating Scores for w1=1   Difference Equating Scores for w1=0.5   Difference 

0 0 0 0 0 

1 0.7374 0.2626 0.8071 0.1929 

2 1.7737 0.2263 1.8366 0.1634 

3 2.8099 0.1901 2.8661 0.1339 

4 3.8462 0.1538 3.8956 0.1044 

5 4.8824 0.1176 4.9251 0.0749 

6 5.9187 0.0813 5.9546 0.0454 

7 6.9549 0.0451 6.9841 0.0159 

8 7.9912 0.0088 8.0136 -0.0136 

9 9.0275 -0.0275 9.0431 -0.0431 

10 10.0637 -0.0637 10.0726 -0.0726 

11 11.1 -0.1000 11.1021 -0.1021 

12 12.1362 -0.1362 12.1316 -0.1316 

13 13.1725 -0.1725 13.1611 -0.1611 

14 14.2087 -0.2087 14.1906 -0.1906 

15 15.245 -0.245 15.2201 -0.2201 

16 16.2813 -0.2813 16.2496 -0.2496 

17 17.3175 -0.3175 17.2791 -0.2791 

18 18.3538 -0.3538 18.3086 -0.3086 

19 19.39 -0.39 19.3381 -0.3381 

20 20.4263 -0.4263 20.3676 -0.3676 

21 21.4625 -0.4625 21.3971 -0.3971 

22 22.4988 -0.4988 22.4266 -0.4266 

23 23.5351 -0.5351 23.4561 -0.4561 

24 24.5713 -0.5713 24.4856 -0.4856 

25 25 0 25 0 
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Appendix 5- Equating Scores and Difference Values Obtained Using the LevineOS Equating Method 

Levine OS 

Raw Sores Equating Scores for w1=1   Difference 
Equating Scores for 

w1=0.5   Difference 

0 0 0 0 0 

1 0.6535 0.3465 0.6459 0.3541 

2 1.6913 0.3087 1.6849 0.3151 

3 2.729 0.271 2.7239 0.2761 

4 3.7668 0.2332 3.7629 0.2371 

5 4.8045 0.1955 4.8019 0.1981 

6 5.8423 0.1577 5.841 0.159 

7 6.8801 0.1199 6.88 0.12 

8 7.9178 0.0822 7.919 0.081 

9 8.9556 0.0444 8.958 0.042 

10 9.9933 0.0067 9.997 0.003 

11 11.0311 -0.0311 11.036 -0.036 

12 12.0688 -0.0688 12.075 -0.075 

13 13.1066 -0.1066 13.114 -0.114 

14 14.1444 -0.1444 14.153 -0.153 

15 15.1821 -0.1821 15.192 -0.192 

16 16.2199 -0.2199 16.2311 -0.2311 

17 17.2576 -0.2576 17.2701 -0.2701 

18 18.2954 -0.2954 18.3091 -0.3091 

19 19.3331 -0.3331 19.3481 -0.3481 

20 20.3709 -0.3709 20.3871 -0.3871 

21 21.4087 -0.4087 21.4261 -0.4261 

22 22.4464 -0.4464 22.4651 -0.4651 

23 23.4842 -0.4842 23.5041 -0.5041 

24 24.5219 -0.5219 24.5431 -0.5431 

25 25 0 25 0 
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Appendix 6- Equating Scores and Difference Values Obtained Using the Levine True Score Equating 

Method 

 LevineTS  

Raw Scores Equating Scores Difference 

0 0 0 

1 0 0 

2 0 0 

3 1.1301 1.8699 

4 2.3602 1.6398 

5 3.5902 1.4098 

6 4.8203 1.1797 

7 6.0504 0.9496 

8 7.2804 0.7196 

9 8.5105 0.4895 

10 9.7406 0.2594 

11 10.9706 0.0294 

12 12.2007 -0.2007 

13 13.4307 -0.4307 

14 14.6608 -0.6608 

15 15.8909 -0.8909 

16 17.1209 -1.1209 

17 18.3510 -1.3510 

18 19.5811 -1.5811 

19 20.8111 -1.8111 

20 22.0412 -2.0412 

21 23.2713 -2.2713 

22 24.5013 -2.5013 

23 25 0 

24 25 0 

25 25 0 
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Appendix 7- Equating Scores and Difference Values Obtained Using the Classical Congeneric 

Equating Method 

 Classical Congeneric  

Raw Scores Equating Scores Difference 

0 0 0 

1 0.6333 0.3667 

2 1.6690 0.3310 

3 2.7047 0.2953 

4 3.7404 0.2596 

5 4.7761 0.2239 

6 5.8118 0.1882 

7 6.8475 0.1525 

8 7.8832 0.1168 

9 8.9188 0.0812 

10 9.9545 0.0455 

11 10.9902 0.0098 

12 12.0259 -0.0259 

13 13.0616 -0.0616 

14 14.0973 -0.0973 

15 15.1330 -0.1330 

16 16.1687 -0.1687 

17 17.2044 -0.2044 

18 18.2401 -0.2401 

19 19.2758 -0.2758 

20 20.3115 -0.3115 

21 21.3472 -0.3472 

22 22.3829 -0.3829 

 

Appendix 8- Equating Scores Obtained from the Braun-Holland Method 

Braun-Holland 

Raw Scores Equating Scores Difference 

0 0 0 

1 0 0 

2 0.9335 1.0665 

3 2.0835 0.9165 

4 3.2334 0.7666 

5 4.3833 0.6167 

6 5.5333 0.4667 

7 6.6832 0.3168 

8 7.8331 0.1669 

9 8.9831 0.0169 

10 10.133 -0.133 

11 11.2829 -0.2829 

12 12 0 
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Appendix 9- Values Obtained from EE Method Based on Pre-Smoothing 

  EE 

X form score Standard Error Unsmoothed Log-Lineer (C=6) Beta4 

0 0.1630 0.1384 -0.0681 -0.1637 

1 0.2137 1.1492 0.8742 0.7833 

2 0.1742 2.0807 1.8140 1.7339 

3 0.1655 2.9008 2.7460 2.6994 

4 0.1831 3.7078 3.6794 3.6815 

5 0.2035 4.5315 4.6317 4.6969 

6 0.2384 5.4438 5.6234 5.7431 

7 0.2916 6.6477 6.6708 6.8132 

8 0.3081 7.8182 7.7791 7.8985 

9 0.3316 9.0535 8.9379 8.9916 

10 0.3292 10.1093 10.1243 10.0871 

11 0.3379 11.1660 11.3084 11.1810 

12 0.3525 12.3693 12.4626 12.2700 

13 0.4455 13.5228 13.5677 13.3511 

14 0.3409 14.8450 14.6131 14.4215 

15 0.2978 15.7167 15.6000 15.4783 

16 0.2881 16.4249 16.5391 16.5187 

17 0.3112 17.3366 17.4492 17.5392 

18 0.2956 18.1770 18.3534 18.5353 

19 0.3496 19.4024 19.2760 19.5034 

20 0.2425 20.2149 20.2384 20.4440 

21 0.2452 21.1492 21.2519 21.3607 

22 0.2197 22.1928 22.3106 22.2648 

23 0.2737 23.5643 23.3847 23.1723 

24 0.1414 23.7691 24.4196 24.0965 

25 0.3099 24.0878 25.3089 25.0442 
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Appendix 10-Raw Score Conversions for Post-Smoothing 

Raw Scores Standard Error Unsmooted S=0.01 S=0.05 S=0.10 S=0.20 S=0.30 S=0.40 S=0.50 S=0.75 S=1.00 LE 

0 0.163 -0.143 -0.065 -0.052 -0.045 -0.054 -0.068 -0.081 -0.091 -0.092 -0.091 -0.401 

1 0.2137 0.787 0.806 0.845 0.866 0.837 0.795 0.757 0.726 0.724 0.727 0.644 

2 0.1742 1.887 1.874 1.847 1.823 1.787 1.759 1.735 1.715 1.726 1.728 1.689 

3 0.1655 2.825 2.813 2.787 2.760 2.741 2.738 2.736 2.736 2.763 2.765 2.735 

4 0.1831 3.663 3.667 3.679 3.684 3.702 3.723 3.742 3.76 3.801 3.802 3.780 

5 0.2035 4.574 4.569 4.596 4.630 4.684 4.725 4.76 4.791 4.838 4.839 4.825 

6 0.2384 5.571 5.571 5.592 5.631 5.701 5.752 5.795 5.831 5.876 5.875 5.870 

7 0.2916 6.657 6.670 6.678 6.698 6.760 6.807 6.848 6.883 6.914 6.912 6.916 

8 0.3081 7.847 7.848 7.828 7.817 7.855 7.888 7.917 7.943 7.951 7.949 7.961 

9 0.3316 9.044 9.023 8.983 8.964 8.974 8.986 8.998 9.01 8.989 8.986 9.006 

10 0.3292 10.118 10.116 10.112 10.117 10.104 10.091 10.083 10.079 10.026 10.023 10.052 

11 0.3379 11.181 11.198 11.245 11.270 11.231 11.194 11.168 11.147 11.064 11.059 11.097 

12 0.3525 12.368 12.364 12.413 12.417 12.344 12.287 12.245 12.21 12.101 12.096 12.142 

13 0.4455 13.523 13.601 13.586 13.536 13.430 13.362 13.309 13.265 13.138 13.133 13.188 

14 0.3409 14.845 14.778 14.682 14.595 14.480 14.411 14.358 14.309 14.175 14.17 14.233 

15 0.2978 15.717 15.692 15.642 15.578 15.490 15.434 15.388 15.343 15.212 15.206 15.278 

16 0.2881 16.435 16.485 16.517 16.507 16.468 16.435 16.402 16.366 16.248 16.243 16.324 

17 0.3112 17.341 17.340 17.393 17.420 17.430 17.422 17.406 17.381 17.284 17.28 17.369 

18 0.2956 18.251 18.289 18.311 18.345 18.391 18.405 18.404 18.391 18.32 18.317 18.414 

19 0.3496 19.377 19.308 19.271 19.297 19.360 19.39 19.401 19.399 19.356 19.354 19.460 

20 0.2425 20.263 20.262 20.249 20.278 20.346 20.383 20.401 20.407 20.392 20.39 20.505 

21 0.2452 21.204 21.224 21.268 21.299 21.354 21.387 21.406 21.416 21.427 21.427 21.550 

22 0.2197 22.312 22.360 22.364 22.365 22.386 22.404 22.417 22.427 22.463 22.464 22.596 

23 0.2737 23.564 23.539 23.485 23.455 23.433 23.429 23.432 23.44 23.498 23.501 23.641 

24 0.1414 24.349 24.403 24.409 24.404 24.383 24.372 24.371 24.379 24.44 24.444 24.686 

25 0.3099 25.088 25.134 25.136 25.135 25.128 25.124 25.124 25.126 25.147 25.148 25.732 
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Appendix 11-Frequency Estimation Method Results According to Different Weight Values of the 

Synthetic Population 

 

Synthetic 
Weights 

Raw Scores 
Equating 

Scores 
Difference 

Synthetic 
Weights 

Equating 
Scores 

Difference 

w1= 0.5; 
w2=0.5 

0 0 0 w1=1; w2=0 0 0 

 1 0 0  0 0 

 2 0 0  0 0 

 3 3.9136 -0.9136  3.9172 -0.9172 

 4 4.9173 -0.9173  4.9215 -0.9215 

 5 5.9513 -0.9513  5.9593 -0.9593 

 6 6.0923 -0.0923  6.0947 -0.0947 

 7 7.2091 -0.2091  7.2133 -0.2133 

 8 8.1629 -0.1629  8.1648 -0.1648 

 9 9.0895 -0.0895  9.0912 -0.0912 

 10 10.1874 -0.1874  10.1892 -0.1892 

 11 11.4419 -0.4419  11.4434 -0.4434 

 12 11.6069 0.3931  11.6065 0.3935 
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Appendix 12- Scores Obtained from IRT TS and IRT OS Equating Methods 

X Scores IRT    IRT OS 

  IRT TS Difference  Difference 

0 ….. 0 0 0.0489 -0.0489 

1 ….. 0.9477 0.0523 0.9824 0.0176 

2 ….. 1.8955 0.1045 1.8965 0.1035 

3 ….. 2.8462 0.1538 2.78 0.22 

4 -1.3124 3.7859 0.2141 3.6408 0.3592 

5 -0.9112 4.4421 0.5579 4.4699 0.5301 

6 -0.647 5.205 0.795 5.3319 0.6681 

7 -0.439 6.1223 0.8777 6.2561 0.7439 

8 -0.2673 7.1676 0.8324 7.2557 0.7443 

9 -0.1206 8.2952 0.7048 8.3046 0.6954 

10 0.0103 9.4658 0.5342 9.362 0.638 

11 0.131 10.645 0.355 10.4504 0.5496 

12 0.2444 11.8017 0.1983 11.6826 0.3174 

13 0.3516 12.9166 0.0834 12.8915 0.1085 

14 0.4535 13.9877 0.0123 13.9777 0.0223 

15 0.5513 15.0248 -0.0248 15.0174 -0.0174 

16 0.6467 16.0439 -0.0439 16.0452 -0.0452 

17 0.7418 17.0623 -0.0623 17.067 -0.067 

18 0.8393 18.0946 -0.0946 18.0992 -0.0992 

19 0.9431 19.1495 -0.1495 19.1623 -0.1623 

20 1.0595 20.2319 -0.2319 20.231 -0.231 

21 1.1992 21.3487 -0.3487 21.311 -0.311 

22 1.3847 22.5154 -0.5154 22.5026 -0.5026 

23 1.6807 23.6584 -0.6584 23.6854 -0.6854 

24 2.1527 24.5061 -0.5061 24.4691 -0.4691 

25 ….. 25 0 25 0 
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Yayın Etiği Beyanı 

Bu araştırmanın planlanmasından, uygulanmasına, verilerin toplanmasından verilerin analizine 

kadar olan tüm süreçte “Yükseköğretim Kurumları Bilimsel Araştırma ve Yayın Etiği Yönergesi” 

kapsamında uyulması belirtilen tüm kurallara uyulmuştur. Yönergenin ikinci bölümü olan “Bilimsel 

Araştırma ve Yayın Etiğine Aykırı Eylemler” başlığı altında belirtilen eylemlerden hiçbiri 

gerçekleştirilmemiştir. Bu araştırmanın yazım sürecinde bilimsel, etik ve alıntı kurallarına uyulmuş; 

toplanan veriler üzerinde herhangi bir tahrifat yapılmamıştır. Bu çalışma herhangi başka bir akademik 

yayın ortamına değerlendirme için gönderilmemiştir.  

Araştırmacıların Katkı Oranı Beyanı 

Birinci yazar Ceren Mutluer %70, ikinci yazar Prof. Dr. Mehtap Çakan %30 oranında katkı 

sağlamıştır.  

Çatışma Beyanı  

Araştırmanın yazarları arasında herhangi bir çıkar çatışması bulunmamaktadır. Ayrıca yazarlar, 

diğer kişi, kurum ya da kuruluşlarla herhangi bir çıkar çatışması içinde olmadıklarını beyan ederler. 


